Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Pathogens ; 12(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37764943

ABSTRACT

Arboviruses are an important group of pathogens that cause diseases of medical and veterinary concern worldwide. The interactions of these viruses with their host cells are complex, and frequently, the coexistence of two different viruses in the same cell results in the inhibition of replication in one of the viruses, which is a phenomenon called viral interference. This phenomenon can be exploited to develop antiviral strategies. Insect cell lines persistently infected with arboviruses are useful models with which to study viral interference. In this work, a model of C6/36-HT cells (from Aedes albopictus mosquitoes) persistently infected with Dengue virus, serotype 2, was used. Viral interference was evaluated via plaque and flow cytometry assays. The presence of heterotypic interference against the other serotypes of the same virus and homologous interference against yellow fever virus was determined; however, this cell line did not display heterologous viral interference against Sindbis virus. The mechanisms responsible for viral interference have not been fully elucidated, but small RNAs could be involved. However, the silencing of Ago3, a key protein in the genome-derived P-element-induced wimpy testis pathway, did not alter the viral interference process, suggesting that viral interference occurs independent of this pathway.

2.
Pathogens ; 12(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36839463

ABSTRACT

The establishment of persistent dengue virus infection within the cells of the mosquito vector is an essential requirement for viral transmission to a new human host. The mechanisms involved in the establishment and maintenance of persistent infection are not well understood, but it has been suggested that both viral and cellular factors might play an important role. In the present work, we evaluated differential gene expression in Aedes albopictus cells acutely (C6/36-HT) and persistently infected (C6-L) with Dengue virus 2 by cDNA-AFLP. We observed that importin ß3 was upregulated in noninfected cells compared with C6-L cells. Using RT-qPCR and plaque assays, we observed that Dengue virus levels in C6-L cells essentially do not vary over time, and peak viral titers in acutely infected cells are observed at 72 and 120 h postinfection. The expression level of importin ß3 was higher in acutely infected cells than in persistently infected cells; this correlates with higher levels of NS5 in the nucleus of the cell. The differential pattern of importin ß3 expression between acute and persistent infection with Dengue virus 2 could be a mechanism to maintain viral infection over time, reducing the antiviral response of the cell and the viral replicative rate.

3.
Front Cell Infect Microbiol ; 12: 976843, 2022.
Article in English | MEDLINE | ID: mdl-36310869

ABSTRACT

The genus Flavivirus of the Flaviviridae family includes important viruses, such as Dengue, Zika, West Nile, Japanese encephalitis, Murray Valley encephalitis, tick-borne encephalitis, Yellow fever, Saint Louis encephalitis, and Usutu viruses. They are transmitted by mosquitoes or ticks, and they can infect humans, causing fever, encephalitis, or haemorrhagic fever. The treatment resources for these diseases and the number of vaccines available are limited. It has been discovered that eukaryotic cells synthesize small RNA molecules that can bind specifically to sequences present in messenger RNAs to inhibit the translation process, thus regulating gene expression. These small RNAs have been named microRNAs, and they have an important impact on viral infections. In this review, we compiled the available information on miRNAs that can interact with the 3' untranslated region (3'UTR) of the flavivirus genome, a conserved region that is important for viral replication and translation.


Subject(s)
Encephalitis, Japanese , Flavivirus , MicroRNAs , Zika Virus Infection , Zika Virus , Animals , Humans , 3' Untranslated Regions , MicroRNAs/genetics , Computational Biology , Flavivirus/genetics , Encephalitis, Japanese/genetics , Zika Virus/genetics
4.
Viruses ; 12(11)2020 10 29.
Article in English | MEDLINE | ID: mdl-33138336

ABSTRACT

Dengue manifestations range from a mild form, dengue fever (DF), to more severe forms such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The ability of the host to present one of these clinical forms could be related to polymorphisms located in genes of the Toll-like receptors (TLRs) which activate the pro-inflammatory response. Therefore, the genotyping of single nucleotide genetic polymorphisms (SNPs) in TLR3 (rs3775291 and rs6552950), TLR4 (rs2737190, rs10759932, rs4986790, rs4986791, rs11536865, and rs10983755), TLR7 (rs179008 and rs3853839), and TLR8 (rs3764880, rs5741883, rs4830805, and rs1548731) was carried out in non-genetically related DHF patients, DF patients, and general population (GP) subjects. The SNPs were analyzed by real-time PCR by genotyping assays from Applied Biosystems®. The codominance model showed that dengue patients had a lower probability of presenting the TLR4-rs2737190-G/G genotype (odds ratio (OR) (95% CI) = 0.34 (0.14-0.8), p = 0.038). Dengue patients showed a lower probability of presenting TLR4-rs11536865-G/C genotype (OR (95% CI) = 0.19 (0.05-0.73), p = 0.0092) and had a high probability of presenting the TACG haplotype, but lower probability of presenting the TGCG haplotype in the TLR4 compared to GP individuals (OR (95% CI) = 0.55 (0.35-0.86), p = 0.0084). In conclusion, the TLR4-rs2737190-G/G and TLR4-rs11536865-G/C genotypes and TGCG haplotype were associated with protection from dengue.


Subject(s)
Dengue/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Toll-Like Receptor 3/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 7/genetics , Toll-Like Receptor 8/genetics , Adult , Aged , Alleles , Case-Control Studies , Dengue/blood , Dengue/epidemiology , Epidemics , Female , Genotype , Haplotypes , Humans , Male , Mexico/epidemiology , Middle Aged
5.
Biomed Res Int ; 2020: 6759346, 2020.
Article in English | MEDLINE | ID: mdl-32802864

ABSTRACT

The disease caused by the Zika virus (ZIKV) has positioned itself as one of the main public health problems in Mexico. One of the main reasons is it causes microcephaly and other birth defects. The transmission of ZIKV is through Aedes aegypti and Ae. albopictus mosquitoes, which are found in a larger space of the national territory. In addition, it can also be transmitted via blood transfusion, sexual relations, and maternal-fetal route. So far, there are no vaccines or specific treatments to deal with this infection. Currently, some new therapeutics such as small interfering RNAs (siRNAs) are able to regulate or suppress transcription in viruses. Therefore, in this project, an in silico siRNA was designed for the 3'UTR region of ZIKV via bioinformatics tools. The designed siRNA was synthesized and transfected into the C6/36 cell line, previously infected with ZIKV in order to assess the ability of the siRNA to inhibit viral replication. The designed siRNA was able to inhibit significantly (p < 0.05) ZIKV replication; this siRNA could be considered a potential therapeutic towards the disease that causes ZIKV and the medical problems generated.


Subject(s)
3' Untranslated Regions , RNA, Small Interfering , RNA, Viral/metabolism , Virus Replication/drug effects , Zika Virus/physiology , Cell Line , Humans , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA, Small Interfering/pharmacology , RNA, Viral/genetics , Virus Replication/genetics
6.
Viruses ; 12(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708685

ABSTRACT

The arthropod-borne flaviviruses are important human pathogens, and a deeper understanding of the virus-host cell interaction is required to identify cellular targets that can be used as therapeutic candidates. It is well reported that the flaviviruses hijack several cellular functions, such as exosome-mediated cell communication during infection, which is modulated by the delivery of the exosomal cargo of pro- or antiviral molecules to the receiving host cells. Therefore, to study the role of exosomes during flavivirus infections is essential, not only to understand its relevance in virus-host interaction, but also to identify molecular factors that may contribute to the development of new strategies to block these viral infections. This review explores the implications of exosomes in flavivirus dissemination and transmission from the vector to human host cells, as well as their involvement in the host immune response. The hypothesis about exosomes as a transplacental infection route of ZIKV and the paradox effect or the dual role of exosomes released during flavivirus infection are also discussed here. Although several studies have been performed in order to identify and characterize cellular and viral molecules released in exosomes, it is not clear how all of these components participate in viral pathogenesis. Further studies will determine the balance between protective and harmful exosomes secreted by flavivirus infected cells, the characteristics and components that distinguish them both, and how they could be a factor that determines the infection outcome.


Subject(s)
Cell Communication , Exosomes/metabolism , Flavivirus Infections/metabolism , Flavivirus/metabolism , Host-Pathogen Interactions , Animals , Arachnid Vectors/virology , Dengue/metabolism , Extracellular Vesicles/metabolism , Extracellular Vesicles/virology , Flavivirus Infections/transmission , Humans , Mosquito Vectors/virology , Ticks/virology , Zika Virus Infection/metabolism
7.
J Gen Virol ; 101(8): 825-839, 2020 08.
Article in English | MEDLINE | ID: mdl-32478656

ABSTRACT

Dengue virus (DENV) is an important flavivirus that is transmitted to humans by Aedes mosquitoes, where it can establish a persistent infection underlying vertical and horizontal transmission. However, the exact mechanism of persistent DENV infection is not well understood. Recently miR-927 was found to be upregulated in C6/36-HT cells at 57 weeks of persistent infection (C6-L57), suggesting its participation during this type of infection. The aim of this study was to determine the role of miR-927 during infection with DENV type 2. The results indicate an overexpression of miR-927 in C6-L57 cells and acutely infected cells according to the time of infection and the m.o.i. used. The downregulation of miR-927 in C6-L57 cells results in a reduction of both viral titre and viral genome copy number. The overexpression of miR-927 in C6-L40 and C6/36 cells infected at an m.o.i. of 0.1 causes an increase in both viral titre and viral genome copy number, suggesting a pro-viral activity of miR-927. In silico prediction analysis reveals target mRNAs for miR-927 are implicated in post-translational modifications (SUMO), translation factors (eIF-2B), the innate immune system (NKIRAS), exocytosis (EXOC-2), endocytosis (APM1) and the cytoskeleton (FLN). The expression levels of FLN were the most affected by both miR-927 overexpression and inhibition, and FLN was determined to be a direct target of miR-927 by a dual-luciferase gene reporter assay. FLN has been associated with the regulation of the Toll pathway and either overexpression or downregulation of miR-927 resulted in expression changes of antimicrobial peptides (Cecropins A and G, and Defensin D) involved in the Toll pathway response.


Subject(s)
Aedes/genetics , Aedes/virology , Dengue Virus/genetics , Dengue/virology , MicroRNAs/genetics , Animals , Cell Line , Communicable Diseases/genetics , Communicable Diseases/virology , Genome, Viral/genetics , Luciferases/genetics , Virus Replication/genetics
8.
Virus Res ; 266: 1-14, 2019 06.
Article in English | MEDLINE | ID: mdl-30930201

ABSTRACT

Exosomes are endocytic origin small-membrane vesicles secreted to the extracellular space by most cell types. Exosomes released from virus infected-cells can mediate the cell-to-cell communication to promote or modulate viral transmission. Dengue virus (DENV) is an arbovirus transmitted by Aedes mosquitoes bite to humans. Interestingly, the role of exosomes during the DENV infection in mammalian cells has already been described. However, little is known about exosomes derived from infected mosquito cells. Thus, the exosomes released from DENV-infected C6/36 cells were isolated, purified and analyzed using an antibody against the tetraspanin CD9 from human that showed cross-reactivity with the homologs to human CD9 found in Aedes albopictus (AalCD9). The exosomes from DENV infected cells were larger than the exosomes secreted from uninfected cells, contained virus-like particles, and they were able to infect naïve C6/36 cells, suggesting that exosomes are playing a role in virus dissemination.


Subject(s)
Dengue Virus/physiology , Exosomes/metabolism , Exosomes/virology , Mosquito Vectors/virology , Aedes , Animals , Cell Line , Dengue/metabolism , Dengue/virology , Dynamic Light Scattering , Exosomes/immunology , Humans , Insect Proteins/chemistry , Insect Proteins/genetics , Insect Proteins/immunology , Insect Proteins/metabolism , Microscopy, Confocal , Microscopy, Electron, Transmission , Mosquito Vectors/classification , Mosquito Vectors/genetics , Mosquito Vectors/metabolism , Phylogeny , Tetraspanins/chemistry , Tetraspanins/genetics , Tetraspanins/immunology , Tetraspanins/metabolism , Virus Replication
9.
Virology ; 531: 1-18, 2019 05.
Article in English | MEDLINE | ID: mdl-30844508

ABSTRACT

Dengue viruses (DENV) are important arboviruses that can establish a persistent infection in its mosquito vector Aedes. Mosquitoes have a short lifetime in nature which makes trying to study the processes that take place during persistent viral infections in vivo. Therefore, C6/36 cells have been used to study this type of infection. C6/36 cells persistently infected with DENV 2 produce virions that cannot infect BHK -21 cells. We hypothesized that the following passages in mosquito cells have a deleterious impact on DENV fitness in vertebrate cells. Here, we demonstrated that the viral particles released from persistently infected cells were infectious to mosquito but not to vertebrate cells. This host restriction occurs at the replication level and is associated with several mutations in the DENV genome. In summary, our findings provide new information about viral replication fitness in a host-dependent manner.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Host Specificity , Mosquito Vectors/virology , Virus Replication , Animals , Cell Line , Dengue/virology , Dengue Virus/genetics , Genome, Viral , Mosquito Vectors/growth & development
10.
Mol Biol Rep ; 46(1): 1413-1424, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30448895

ABSTRACT

Human astrovirus (HAstV) constitutes a major cause of acute gastroenteritis in children. The viral 5' and 3' untranslated regions (UTR) have been involved in the regulation of several molecular mechanisms. However, in astrovirues have been less characterized. Here, we analyzed the secondary structures of the 5' and 3' UTR of HAstV, as well as their putative target sites that might be recognized by cellular factors. To our knowledge, this is the first bioinformatic analysis that predicts the HAstV 5' UTR secondary structure. The analysis showed that both the UTR sequence and secondary structure are highly conserved in all HAstVs analyzed, suggesting their regulatory role of viral activities. Notably, the UTRs of HAstVs contain putative binding sites for the serine/arginine-rich factors SRSF2, SRSF5, SRSF6, SRSF3, and the multifunctional hnRNPE2 protein. More importantly, putative binding sites for PTB were localized in single-stranded RNA sequences, while hnRNPE2 sites were localized in double-stranded sequence of the HAstV 5' and 3' UTR structures. These analyses suggest that the combination of SRSF proteins, hnRNPE2 and PTB described here could be involved in the maintenance of the secondary structure of the HAstVs, possibly allowing the recruitment of the replication complex that selects and recruits viral RNA replication templates.


Subject(s)
Computer Simulation , Mamastrovirus/genetics , Proteins/metabolism , Untranslated Regions/genetics , Base Sequence , Binding Sites , Nucleic Acid Conformation
11.
Arch Virol ; 163(6): 1643-1647, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29426993

ABSTRACT

Here, we report for the first time the circulation of dengue virus type 1 (DENV-1) belonging to the lineage IV of genotype V (African American genotype) based on phylogenetic analysis of nucleotide sequences from 10 DENV-1-positive samples obtained in Mexico between 2012 and 2014. Our data revealed that the lineages III and IV of DENV-1 genotype V were found circulating during the same period, probably explaining the rise in the number of cases of severe dengue during that period.


Subject(s)
Dengue Virus/genetics , Genotype , Phylogeny , RNA, Viral/genetics , Severe Dengue/epidemiology , Adolescent , Adult , Child , Dengue Virus/classification , Dengue Virus/isolation & purification , Evolution, Molecular , Female , Founder Effect , Genetic Variation , Humans , Male , Mexico/epidemiology , Middle Aged , Molecular Epidemiology , Phylogeography , Severe Dengue/diagnosis , Severe Dengue/pathology , Severe Dengue/virology
12.
Virology ; 515: 74-80, 2018 02.
Article in English | MEDLINE | ID: mdl-29272748

ABSTRACT

Dengue virus (DENV) is an arbovirus, which replicates in the endoplasmic reticulum. Although replicative cycle takes place in the cytoplasm, some viral proteins such as NS5 and C are translocated to the nucleus during infection in mosquitoes and mammalian cells. To localized viral proteins in DENV-infected C6/36 cells, an immunofluorescence (IF) and immunoelectron microscopy (IEM) analysis were performed. Our results indicated that C, NS1, NS3 and NS5 proteins were found in the nucleus of DENV-infected C6/36 cells. Additionally, complex structures named strand-like structures (Ss) were observed in the nucleus of infected cells. Interestingly, the NS5 protein was located in these structures. Ss were absent in mock-infected cells, suggesting that DENV induces their formation in the nucleus of infected mosquito cells.


Subject(s)
Culicidae/virology , Dengue Virus/ultrastructure , Dengue/virology , Viral Nonstructural Proteins/ultrastructure , Animals , Cell Line , Cell Nucleus/ultrastructure , Cell Nucleus/virology , Endoplasmic Reticulum/ultrastructure , Endoplasmic Reticulum/virology , Humans , Mice, Inbred BALB C , RNA Helicases/ultrastructure , Serine Endopeptidases/ultrastructure , Virus Replication
13.
Virus Res ; 232: 139-151, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28267608

ABSTRACT

Dengue virus (DENV) is the most important arbovirus in the world; DENV is transmitted by the Aedes genus of mosquitoes and can establish a life-long persistent infection in mosquitoes. However, the exact mechanism by which persistent infection is established remains unknown. In this study the differential expression of miRNAs was analysed by deep sequencing and RT-qPCR using a previously established C6/36-HT cell line persistently infected with DENV 2 (C6-L) as a model. miR-927, miR-87, miR-210, miR-2a-3p, miR-190 and miR-970 were up-regulated, whereas miR-252, miR-263a-3p, miR-92b, miR-10-5p miR-9a-5p, miR-9a-1, miR-124, miR-286a and miR-286b were down-regulated in C6-L cells compared with C6/36 cells acutely infected with the same virus or mock-infected cells. Deep sequencing results were validated by RT-qPCR for the highly differentially expressed miR-927 and miR-9a-5p, which were up- and down-regulated, respectively, compared with both acutely and mock-infected C6/36 cells. The putative targets of these miRNAs include components of the ubiquitin conjugation pathway, vesicle-mediated transport, autophagy, and the JAK-STAT cascade as well as proteins with endopeptidase activity. Other putative targets include members of the Toll signalling pathway and proteins with kinase, ATPase, protease, scavenger receptor or Lectin C-type activity or that participate in fatty acid biosynthesis or oxidative stress. Our results suggest that several specific miRNAs help regulate the cellular functions that maintain equilibrium between viral replication and the antiviral response during persistent infection of mosquito cells. This study is the first report of a global miRNA profile in a mosquito cell line persistently infected with DENV.


Subject(s)
Aedes/virology , Dengue Virus/genetics , Dengue/transmission , Genome, Viral , MicroRNAs/genetics , Viral Proteins/genetics , Aedes/cytology , Animals , Cell Line , Dengue/virology , Gene Expression Regulation , Gene Ontology , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Host-Pathogen Interactions , Humans , Metabolic Networks and Pathways/genetics , MicroRNAs/metabolism , Molecular Sequence Annotation , Signal Transduction , Viral Proteins/metabolism , Virus Replication
14.
J Diabetes Res ; 2016: 8178936, 2016.
Article in English | MEDLINE | ID: mdl-26839897

ABSTRACT

This study was designed to examine the effects of lyophilized red delicious apple peel (RDP) on the action potentials (APs) and the input resistance-threshold current relationship. The experiments were performed on isolated papillary heart muscles from healthy male rats, healthy male rats treated with RDP, diabetic male rats, and diabetic male rats treated with RDP. The preparation was superfused with oxygenated Tyrode's solution at 37°C. The stimulation and the recording of the APs, the input resistance, and the threshold current were made using conventional electrophysiological methods. The RDP presented no significant effect in normal rats. Equivalent doses in diabetic rats reduced the APD and ARP. The relationship between input resistance and threshold current established an inverse correlation. The results indicate the following: (1) The functional structure of the cardiac ventricular syncytium in healthy rats is heterogeneous, in terms of input resistance and threshold current. Diabetes further accentuates the heterogeneity. (2) As a consequence, conduction block occurs and increases the possibility of reentrant arrhythmias. (3) These modifications in the ventricular syncytium, coupled with the increase in the ARP, are the adequate substrate so that, with diabetes, the heart becomes more arrhythmogenic. (4) RDP decreases the APD, the ARP, and most syncytium irregularity caused by diabetes.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/physiopathology , Heart/physiopathology , Malus/chemistry , Plant Extracts/pharmacology , Action Potentials , Animals , Arrhythmias, Cardiac/metabolism , Blood Glucose/analysis , Body Weight , Fruit/chemistry , Glycated Hemoglobin/analysis , Heart/drug effects , Isotonic Solutions , Male , Papillary Muscles/metabolism , Rats , Temperature
15.
J Immunol Res ; 2015: 873404, 2015.
Article in English | MEDLINE | ID: mdl-26583158

ABSTRACT

Mosquito-borne flaviviruses are important pathogens for humans, and the detection of two or more flaviviruses cocirculating in the same geographic area has often been reported. However, the epidemiological impact remains to be determined. Mosquito-borne flaviviruses are primarily transmitted through Aedes and Culex mosquitoes; these viruses establish a life-long or persistent infection without apparent pathological effects. This establishment requires a balance between virus replication and the antiviral host response. Viral interference is a phenomenon whereby one virus inhibits the replication of other viruses, and this condition is frequently associated with persistent infections. Viral interference and persistent infection are determined by several factors, such as defective interfering particles, competition for cellular factors required for translation/replication, and the host antiviral response. The interaction between two flaviviruses typically results in viral interference, indicating that these viruses share common features during the replicative cycle in the vector. The potential mechanisms involved in these processes are reviewed here.


Subject(s)
Culicidae/physiology , Culicidae/virology , Flavivirus/physiology , Host-Pathogen Interactions , Viral Interference , Animals , Flavivirus Infections/transmission , Flavivirus Infections/virology , Humans , RNA Interference , RNA, Small Interfering/genetics
16.
Recent Pat Biotechnol ; 9(3): 158-67, 2015.
Article in English | MEDLINE | ID: mdl-27316220

ABSTRACT

BACKGROUND: Patents on phytochemicals are being registered worldwide. Such phytochemicals provide benefits to human health, and include terpenoids, phenolic compounds, alkaloids, lignin, and fiber. OBJECTIVE: This review has the purpose to provide a comprehensive overview of patents published in the last five years about extraction of phytochemicals and their application in the food and pharmaceutical industry. METHOD: Forty eight pa- tents were analyzed and classified in four topics of interest; 1) Extraction, 2) Functional foods, 3) Biological activity, and 4) Prevention of diseases. RESULTS: Extraction yield of phytochemicals is the critical step. The techniques to extract phytochemicals include enzymat- ic hydrolysis, nano-particulate precipitation, salts formation and combination of solvents; however, the use of ultrasound and microwave is increasing. Patents concerning functional foods include pediatric formulations, sport drink, and compo- sitions that produce beneficial effects. Biological activity of plant extracts tested in animals or cell cultures, as antioxidant, anti-inflammatory, anticancer activity, reduction of obesity and diabetes are presented in this review. Application of phy- tochemicals in the prevention and treatment of health disorders, such as diabetes, gastritis, enteritis, topical inflammation, macular degeneration, gingivitis, prostatic hyperplasia, urinary impairments. CONCLUSION: Patents revised include 30% methodologies for extraction of phytochemicals, 16% application of phytochem- icals in food matrixes to obtain functional foods, 18% biological activity of extracts or compounds and 36% application in the prevention and treatment of illness, which reveals a great interest to protect intellectual property concerning applica- tion of phytochemicals formulations for human health.


Subject(s)
Phytochemicals/chemistry , Phytochemicals/therapeutic use , Drug Industry/methods , Food Industry/methods , Humans , Patents as Topic , Plant Extracts/chemistry , Plant Extracts/therapeutic use
17.
PLoS One ; 9(11): e113113, 2014.
Article in English | MEDLINE | ID: mdl-25406089

ABSTRACT

The 3' untranslated region (3'UTR) of human astroviruses (HAstV) consists of two hairpin structures (helix I and II) joined by a linker harboring a conserved PTB/hnRNP1 binding site. The identification and characterization of cellular proteins that interact with the 3'UTR of HAstV-8 virus will help to uncover cellular requirements for viral functions. To this end, mobility shift assays and UV cross-linking were performed with uninfected and HAstV-8-infected cell extracts and HAstV-8 3'UTR probes. Two RNA-protein complexes (CI and CII) were recruited into the 3'UTR. Complex CII formation was compromised with cold homologous RNA, and seven proteins of 35, 40, 45, 50, 52, 57/60 and 75 kDa were cross-linked to the 3'UTR. Supermobility shift assays indicated that PTB/hnRNP1 is part of this complex, and 3'UTR-crosslinked PTB/hnRNP1 was immunoprecipitated from HAstV-8 infected cell-membrane extracts. Also, immunofluorescence analyses revealed that PTB/hnRNP1 is distributed in the nucleus and cytoplasm of uninfected cells, but it is mainly localized perinuclearly in the cytoplasm of HAstV-8 infected cells. Furthermore, the minimal 3'UTR sequences recognized by recombinant PTB are those conforming helix I, and an intact PTB/hnRNP1-binding site. Finally, small interfering RNA-mediated PTB/hnRNP1 silencing reduced synthesis viral genome and virus yield in CaCo2 cells, suggesting that PTB/hnRNP1 is required for HAstV replication. In conclusion, PTB/hnRNP1 binds to the 3'UTR HAstV-8 and is required or participates in viral replication.


Subject(s)
3' Untranslated Regions/genetics , Macromolecular Substances/metabolism , Mamastrovirus/metabolism , Polypyrimidine Tract-Binding Protein/metabolism , Virus Replication/physiology , Blotting, Western , Caco-2 Cells , DNA Primers/genetics , Electrophoretic Mobility Shift Assay , Fluorescent Antibody Technique , Humans , Mamastrovirus/genetics , Polymerase Chain Reaction , Polypyrimidine Tract-Binding Protein/genetics , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction
18.
Biomed Res Int ; 2014: 851425, 2014.
Article in English | MEDLINE | ID: mdl-25136631

ABSTRACT

The increasing number of dengue virus (DENV) genome sequences available allows identifying the contributing factors to DENV evolution. In the present study, the codon usage in serotypes 1-4 (DENV1-4) has been explored for 3047 sequenced genomes using different statistics methods. The correlation analysis of total GC content (GC) with GC content at the three nucleotide positions of codons (GC1, GC2, and GC3) as well as the effective number of codons (ENC, ENCp) versus GC3 plots revealed mutational bias and purifying selection pressures as the major forces influencing the codon usage, but with distinct pressure on specific nucleotide position in the codon. The correspondence analysis (CA) and clustering analysis on relative synonymous codon usage (RSCU) within each serotype showed similar clustering patterns to the phylogenetic analysis of nucleotide sequences for DENV1-4. These clustering patterns are strongly related to the virus geographic origin. The phylogenetic dependence analysis also suggests that stabilizing selection acts on the codon usage bias. Our analysis of a large scale reveals new feature on DENV genomic evolution.


Subject(s)
Codon/genetics , Dengue Virus/genetics , Evolution, Molecular , Phylogeny , Base Composition , Base Sequence , Dengue/genetics , Dengue/virology , Genome, Viral , Humans , Mutation
19.
Arch Virol ; 158(6): 1189-207, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23344777

ABSTRACT

Dengue virus (DENV) is the causative agent of the most important mosquito-borne viral disease, which is endemic to over 100 countries in tropical and subtropical areas of the world. It is transmitted to humans by Aedes mosquitoes. The first step in the viral infection of host cells is virion attachment to the plasma membrane, which is mediated by specific surface molecules. There are several molecules that participate in DENV infection of mosquitoes, but only a few have been identified. In this work, we co-purified 4 proteins from C6/36 cells using a recombinant DENV 4 E protein and identified them as 70 kDa Heat Shock and 70 kDa Heat Shock cognate proteins (HSP70/HSc70), Binding immunoglobulin protein (BiP), Thioredoxin/protein disulphide isomerase (PDI), and 44 kDa Endoplasmic reticulum resident protein (ERp44) via matrix-assisted laser desorption/ionisation time of flight (Maldi-ToF) analysis. Using immunofluorescence and flow cytometry assays, we observed re-localisation of HSP70/HSc70 and, to a lesser extent, BiP to the plasma membrane under stress conditions, such as during DENV infection. By performing binding and infection assays independently, we found that all 4 proteins participate in both processes, but to differing extents: HSP70/HSc70 is the most critical component, while ERp44 is less important. Viral infection was not inhibited when the cells were incubated with antibodies against all of the surface proteins after virus binding, which suggests that DENV entry to C6/36 cells is mediated by these proteins at the same step and not sequentially.


Subject(s)
Aedes/virology , Dengue Virus/physiology , Dengue/virology , Virus Attachment , Virus Internalization , Aedes/cytology , Aedes/physiology , Animals , Blotting, Western , Cell Line , Endoplasmic Reticulum/physiology , Flow Cytometry , Fluorescent Antibody Technique , HSC70 Heat-Shock Proteins/physiology , HSP70 Heat-Shock Proteins/physiology , Mass Spectrometry , Membrane Proteins/physiology , Recombinant Proteins , Viral Envelope Proteins/physiology
20.
Arch Virol ; 158(3): 583-99, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23129130

ABSTRACT

Dengue virus is the most important arbovirus that affects humans, and it can establish persistent infections, especially in insect-derived cell cultures. Defective viral genomes have been implicated in the establishment and maintenance of persistent infections with several flaviviruses; however, there exists almost no information concerning defective dengue virus genomes. Here, we report the detection of defective dengue 2 virus genomes in persistently infected mosquito C6/36 cells. The defective viral genomes were detected at a low ratio compared with the wild-type genome. Deletions of approximately 147 residues (222-368) were found in the E protein, and these mainly affected domain III (73 %) of the protein; deletions of approximately 153 residues (4-156) and 228 residues (597-825) were found in the methyltransferase and polymerase domains, respectively, of the NS5 protein. The truncated versions of NS5 could be detected by western blot only in the protein extracts derived from persistently infected cells.


Subject(s)
Defective Viruses/genetics , Dengue Virus/genetics , Genome, Viral , Viral Envelope Proteins/genetics , Viral Nonstructural Proteins/genetics , Aedes/virology , Amino Acid Sequence , Animals , Base Sequence , Cell Line , Cricetinae , Molecular Sequence Data , Sequence Alignment , Sequence Analysis, RNA , Sequence Deletion , Viral Envelope Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...