Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Oral Patol Oral Cir Bucal ; 25(5): e668-e674, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32851984

ABSTRACT

BACKGROUND: The objective of this study was to describe the bacterial communities associated with pediatric patients with endodontic infections of temporal teeth by targeting the 16S rRNA gene using pyrosequencing. MATERIAL AND METHODS: Microbiological samples were obtained from the lower primary molars of thirteen 13 pediatric patients with dental infections. An aspiration method for microbiological sampling was used. The identification of microbiota employing the pyrosequencing method by targeting the 16S gene was performed. RESULTS: Ribosomal 16S RNA gene sequences were amplified, obtaining a total of 16,182 sequences from 13 primary infected molars (13 different individuals) by pyrosequencing. Bacteroidetes phyla (35.15%) were the most abundant followed by Firmicutes (33.3%) and Fusobacteria (10.05%); the presence of specific pathogenic bacteria was determined as well. CONCLUSIONS: The infected root canal of primary teeth contains a high diversity of anaerobic bacteria, and Bacteroidetes, Firmicutes, and Fusobacteria phyla were the most abundant; Prevotella and Streptococcus genera were the most prevalent.


Subject(s)
Bacteria , Bacteroidetes/genetics , Child , Humans , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Tooth, Deciduous
2.
Neurosurgery ; 43(4): 842-52; discussion 852-3, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9766312

ABSTRACT

INTRODUCTION: The infratemporal fossa (ITF) gives passage to most major cerebral vessels and cranial nerves. Dissection of the ITF is essential in many of the lateral cranial base approaches and in exposure of the high cervical internal carotid artery (ICA). We reviewed the surgical anatomy of this region. METHODS: Direct foraminal measurements were made in seven dry skulls (14 sides), and the relationship of these foramina to each other and various landmarks were determined. Ten ITF dissections were performed using a preauricular subtemporal-infratemporal approach. Preliminary dissections of the extracranial great vessels and structures larger than 1 cm were performed using standard macroscopic surgical techniques. Dissection of all structures less than 1 cm was conducted using microsurgical techniques and instruments, including the operating microscope. The anatomic relationships of the muscles, nerves, arteries, and veins were carefully recorded, with special emphasis regarding the relationship of these structures to the styloid diaphragm. The dissection was purely extradural. RESULTS: The styloid diaphragm was identified in all specimens. It divides the ITF into the prestyloid region and the retrostyloid region. The prestyloid region contains the parotid gland and associated structures, including the facial nerve and external carotid artery. The retrostyloid region contains major vascular structures (ICA, internal jugular vein) and the initial exocranial portion of the lower Cranial Nerves IX through XII. Landmarks were identified for the different cranial nerves. The bifurcation of the main trunk of the facial nerve was an average of 21 mm medial to the cartilaginous pointer and an average of 31 mm medial to the tragus of the ear. The glossopharyngeal nerve was found posterior and lateral to stylopharyngeus muscle in nine cases and medial in only one. The vagus nerve was consistently found in the angle formed posteriorly by the ICA and the internal jugular vein. The spinal accessory nerve crossed anterior to the internal jugular vein in five cases and posterior in another five cases. It could be located as it entered the medial surface of the sternocleidomastoid muscle 28 mm (mean) below the mastoid tip. The hypoglossal nerve was most consistently identified as it crossed under the sternocleidomastoid branch of the occipital artery 25 mm posterior to the angle of the mandible and 52 mm anterior and inferior to the mastoid tip. CONCLUSION: The styloid diaphragm divides the ITF into prestyloid and retrostyloid regions and covers the high cervical ICA. Using landmarks for the exocranial portion of the lower cranial nerves is useful it identifying them and avoiding injury during approaches to the high cervical ICA, the upper cervical spine, and the ITF.


Subject(s)
Carotid Artery, Internal/surgery , Cranial Nerves/surgery , Skull Base/surgery , Arteries/pathology , Arteries/surgery , Brain Mapping , Carotid Artery, Internal/pathology , Cranial Nerves/pathology , Humans , Microsurgery , Skull Base/blood supply , Skull Base/pathology , Veins/pathology , Veins/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...