Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(30): 20308-20319, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37099205

ABSTRACT

In this work, we studied the optical properties of Dy-doped Gd2O3 nanoparticles (NPs) before and after their APTES functionalisation. We obtained luminescent Dy@Gd2O3 NPs (0.5, 1, and 5% mol) using a modified polyol method. Our work describes their detailed structural analysis using FT-IR, XRD, HRTEM, TGA and XAS techniques. The results show that these systems present a crystalline structure with a body-centred cubic cell and particle sizes of 10 nm. The dopant position was inferred as substitutional, through XAS analysis at the M4,5-edges of Gd and Dy and K-edge of O, and in C2 sites, based on photoluminescence studies. There was sensitization of the luminescence by the matrix as shown by the emission increase of the hypersensitive transition (6F9/2 → 6H13/2, 572 nm) and also a broadband appears around 510 nm attributed to defects in Gd2O3. An enhanced emissive lifetime of 398 µs was found for the sample doped at 1%. We functionalised the Dy@Gd2O3 (at 1%) NPs with 3-aminopropiltrietoxisilane (APTES) for further application as a biomarker sensor. We found that these NPs conserved their luminescence after adding the surface agent (avoiding quenching effects) making them potential materials for biosensing.

2.
Dalton Trans ; 50(9): 3289-3298, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33595036

ABSTRACT

Amine and nicotinamide groups grafted on ordered mesoporous silica (OMS) were investigated as stabilizers for RhNPs used as catalysts in the hydrogenation of several substrates, including carbonyl and aryl groups. Supported RhNPs on functionalized OMS were prepared by controlled decomposition of an organometallic precursor of rhodium under dihydrogen pressure. The resulting materials were characterized thoroughly by spectroscopic and physical techniques (FTIR, TGA, BET, SEM, TEM, EDX, XPS) to confirm the formation of spherical rhodium nanoparticles with a narrow size distribution supported on the silica surface. The use of nicotinamide functionalized OMS as a support afforded small RhNPs (2.3 ± 0.3 nm), and their size and shape were maintained after the catalyzed acetophenone hydrogenation. In contrast, amine-functionalized OMS formed RhNP aggregates after the catalytic reaction. The supported RhNPs could selectively reduce alkenyl, carbonyl, aryl and heteroaryl groups and were active in the reductive amination of phenol and morpholine, using a low concentration of the precious metal (0.07-0.18 mol%).

SELECTION OF CITATIONS
SEARCH DETAIL
...