Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Enzyme Microb Technol ; 149: 109834, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34311879

ABSTRACT

The goal of this work was the autodisplay of the endo ß-1,4-xylanase (XynA) from Clostridium cellulovorans in Escherichia coli using the AIDA system to carry out whole-cell biocatalysis and hydrolysate xylans. For this, pAIDA-xynA vector containing a synthetic xynA gene was fused to the signal peptide of the toxin subunit B Vibro cholere (ctxB) and the auto-transporter of the synthetic aida gene, which encodes for the connector peptide and ß-barrel of the auto-transporter (AT-AIDA). E. coli TOP10 cells were transformed and the biocatalyst was characterized using beechwood xylans as substrate. Optimal operational conditions were temperature of 55 °C and pH 6.5, and the Michaelis-Menten catalytic constants Vmax and Km were 149 U/gDCW and 6.01 mg/mL, respectively. Xylanase activity was inhibited by Cu2+, Zn2+ and Hg2+ as well as EDTA, detergents, and organic acids, and improved by Ca2+, Co2+ and Mn2+ ions. Ca2+ ion strongly enhanced the xylanolytic activity up to 2.4-fold when 5 mM CaCl2 were added. Also, Ca2+ improved enzyme stability at 60 and 70 °C. Results suggest that pAIDA-xynA vector has the ability to express functional xylanase to perform whole-cell biocatalysis in order to hydrolysate xylans from hemicellulose feedstock.


Subject(s)
Clostridium cellulovorans , Xylans , Clostridium cellulovorans/metabolism , Endo-1,4-beta Xylanases/genetics , Endo-1,4-beta Xylanases/metabolism , Enzyme Stability , Escherichia coli/genetics , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL