Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(5): 4432-4442, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38284564

ABSTRACT

Two-dimensional transition-metal dichalcogenides have attracted significant attention because of their unique intrinsic properties, such as high transparency, good flexibility, atomically thin structure, and predictable electron transport. However, the current state of device performance in monolayer transition-metal dichalcogenide-based optoelectronics is far from commercialization, because of its substantial strain on the heterogeneous planar substrate and its robust metal deposition, which causes crystalline damage. In this study, we show that strain-relaxed and undamaged monolayer WSe2 can improve a device performance significantly. We propose here an original point-cell-type photodetector. The device consists in a monolayer of an absorbing TMD (i.e., WSe2) simply deposited on a structured electrode, i.e., core-shell silicon-gold nanopillars. The maximum photoresponsivity of the device is found to be 23.16 A/W, which is a significantly high value for monolayer WSe2-based photodetectors. Such point-cell photodetectors can resolve the critical issues of 2D materials, leading to tremendous improvements in device performance.

2.
Nanomaterials (Basel) ; 12(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35630923

ABSTRACT

In this contribution, we numerically demonstrate the generation of plasmonic transparency windows in the transmission spectrum of an integrated metaphotonic device. The hybrid photonic-plasmonic structure consists of two rectangular-shaped gold nanoparticles fully embedded in the core of a multimode dielectric optical waveguide, with their major axis aligned to the electric field lines of transverse electric guided modes. We show that these transparencies arise from different phenomena depending on the symmetry of the guided modes. For the TE0 mode, the quadrupolar and dipolar plasmonic resonances of the nanoparticles are weakly coupled, and the transparency window is due to the plasmonic analogue of electromagnetically induced transparency. For the TE1 mode, the quadrupolar and dipolar resonances of the nanoparticles are strongly coupled, and the transparency is originated from the classical analogue of the Autler-Townes effect. This analysis contributes to the understanding of plasmonic transparency windows, opening new perspectives in the design of on-chip devices for optical communications, sensing, and signal filtering applications.

3.
Opt Express ; 30(5): 7918-7927, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35299544

ABSTRACT

The efficient manipulation of light-matter interactions in subwavelength all-dielectric nanostructures offers a unique opportunity for the design of novel low-loss visible- and telecom-range nanoantennas for light routing applications. Several studies have achieved longitudinal and transverse light scattering with a proper amplitude and phase balance among the multipole moments excited in dielectric nanoantennas. However, they only involve the interaction between electric dipole, magnetic dipole, and up to the electric quadrupole. Here, we extend and demonstrate a unidirectional transverse light scattering in a V-shaped silicon nanoantenna that involves the balance up to the magnetic quadrupole moment. Based on the long-wavelength approximation and exact multipole decomposition analysis, we find the interference conditions needed for near-unity unidirectional transverse light scattering along with near-zero scattering in the opposite direction. These interference conditions involve relative amplitude and phases of the electromagnetic dipoles and quadrupoles supported by the silicon nanoantenna. The conditions can be applied for the development of either polarization- or wavelength- dependent light routing on a V-shaped silicon and plasmonic nanoantennas.

4.
Opt Express ; 29(18): 29034-29043, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34615021

ABSTRACT

The development of integrated photonic devices has led to important advancements in the field of light-matter interaction at the nanoscale. One of the main focal points is the coupling between single photon emitters and optical waveguides aiming to achieve efficient optical confinement and propagation. In this work, we focus on the characterization of a hybrid dielectric/plasmonic waveguide consisting of a gold triangular nanoantenna placed on top of a TiO2 waveguide. The strong directionality of the device is experimentally demonstrated by comparing the intensity scattered by the nanotriangle to the one scattered by a SNOM tip for different illumination geometries. The ability of the plasmonic antenna to generate powerful coupling between a single emitter and the waveguide will also be highlighted through numerical simulations.

5.
Nanotechnology ; 32(31)2021 May 12.
Article in English | MEDLINE | ID: mdl-33892483

ABSTRACT

Hexagonal boron nitride (hBN) is one of the most suitable 2D materials for supporting graphene in electronic devices, and it plays a fundamental role in screening out the effect of charge impurities in graphene in contrast to inhomogeneous supports such as silicon dioxide (SiO2). Although many interesting surface science techniques such as scanning tunneling microscopy (STM) revealed dielectric screening by hBN and emergent physical phenomena were observed, STM is only appropriate for graphene electronics. In this paper, we demonstrate the dielectric screening by hBN in graphene integrated on a silicon photonic waveguide from the perspective of a near-field scanning optical microscopy (NSOM) and Raman spectroscopy. We found shifts in the Raman spectra and about three times lower slope decrease in the measured electric near-field amplitude for graphene on hBN relative to that for graphene on SiO2. Based on finite-difference time-domain simulations, we confirm lower electric field slope and scattering rate in graphene on hBN, which implies dielectric screening, in agreement with the NSOM signal. Graphene on hBN integrated on silicon photonics can pave the way for high-performance hybrid graphene photonics.

6.
J Opt Soc Am A Opt Image Sci Vis ; 37(6): 940-950, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32543594

ABSTRACT

We present an experimental and numerical study of the optical properties of nanofabricated samples with layered dielectric structures. The samples, which contain periodic arrays of silicon disks over a flat layer of silicon dioxide on a silicon substrate, present diffraction and thin film interference effects. Well-defined circular fringes that modulate the intensity of the diffraction orders are observed in the far-field angular distribution of scattered light. We also find that although the angle of incidence modulates the intensity of the observed circular ring patterns, it has little or no effect on their angular position. The problem is modeled theoretically through numerical calculations based on a Rayleigh method.

7.
Appl Opt ; 59(2): 572-578, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-32225343

ABSTRACT

Integrated metaphotonic devices has opened new horizons to control light-guiding properties at nanoscale; particularly interesting is the application of plasmonic nanostructures coupled to dielectric waveguides to reduce the inherent light propagation losses in metallic metamaterials. In this contribution, we show the feasibility of using ion-exchanged glass waveguides (IExWg) as a platform for the efficient excitation of surface plasmon polaritons (SPP). These IExWg provide high coupling efficiency and low butt-coupling with conventional dielectric optical waveguides and fibers, overcoming the hard fabrication tunability of commonly used CMOS-guiding platforms. We present a near-field scanning optical microscopy characterization of the propagation characteristics of SPP supported in a gold nanoslab fabricated on top of an IExWg. We found that the SPP can be only be excited with the fundamental TM photonic mode of the waveguide. Thanks to the low propagation loss, low birefringence, and compatibility with optical fibers, glass waveguide technology is a promising platform for the development of integrated plasmonic devices operating at visible and near infrared wavelengths with potential applications in single molecule emission routing or biosensing devices.

8.
Opt Express ; 27(21): 30971-30978, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684338

ABSTRACT

The photothermal characteristics of nanoparticles are of particular interest to biophotonic and biomedical applications due to their ability to efficiently localize thermal energy down to the nanometer scale. However, few works had demonstrated an efficient dissipation of heat to their nanoscale surrounding in response to optical excitation. Here, we demonstrate an efficient platform for optical nanoheating based on silicon nanocuboids. Based on Green's tensor formalism and temperature-dependent Raman spectroscopy analyses, we found that the significant nanoheating effect is a consequence of the resonant modes specifically, to the high degree of overlap between the different resonant modes of the silicon nanocuboids. Currently, the temperature rise of up to 300 K was measured with incident power density of 2.9 mW/µm2. Such effective nanoheating platform would be suitable in applications where controllable optical nanoheating is crucial, such as nanosurgery, photochemistry, and nanofabrication.

9.
Appl Opt ; 58(27): 7503-7509, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31674401

ABSTRACT

Surface plasmon polaritons (SPPs) are surface modes confined to metal-dielectric interfaces. This confinement enhances the electromagnetic field and therefore, SPPs are sensitive to surface conditions. The properties of two dimensional materials such as graphene thus can be enhanced and used to engineer nanoscale components for optical communications. However, SPPs are transverse magnetic modes with electric fields out-of-plane that limit flexibility. In this contribution, we numerically analyze the confinement and in-plane enhancement in graphene-based hybrid plasmonic waveguides. We find that plasmonic modes supported by metal nanoparticle chain waveguides provide higher in-plane enhancement compared to those supported by nano-strip and slot hybrid plasmonic waveguides. Our results contribute to the performance improvement of graphene light absorption devices, including electro-optic modulators and photodetectors.

10.
Nanoscale ; 11(43): 20685-20692, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31642454

ABSTRACT

Transverse electric (TE)-pass polarizers integrated in silicon-on-insulator photonic circuits, based on hybrid plasmonic absorption, have been widely discussed as a key component for applications in information and communication technologies. Nevertheless, the complementary transverse magnetic (TM)-pass polarizer has not been developed due to the TM nature of plasmonic modes. Here, we experimentally demonstrate a nano-scale TM-pass polarizer based on TE-polarized plasmonic absorption using a periodic metal nanoparticle chain integrated on a silicon waveguide. Currently, the measured extinction ratio is 23 dB µm-1 and the insertion loss is 2.4 dB µm-1 at the central wavelength of 1.59 µm, in a device with a footprint of 630 nm (0.4λ). This polarization-selective absorption is analyzed using dispersion curves and transmission near-field scanning optical microscopy. The nanophotonic device completes an integrated polarizer based on plasmonic absorption and provides the necessary footprint for high density integration in photonic integrated circuits.

11.
J Opt Soc Am A Opt Image Sci Vis ; 36(1): 79-88, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645341

ABSTRACT

We propose a metamodel-based optimization technique to tailor the chromatic response of high-contrast-index gratings. The algorithm, which couples a population-based metaheuristic with a neural network, is used to retrieve the optimal geometrical parameters of a grating to reproduce a prescribed color. By means of some examples, we assess the possibilities and limitations of our optimization scheme. The numerical evidence found shows that the metamodel approach offers an alternative to traditional metaheuristic techniques that not only provides the best solution for a given geometry and a material but also significantly improves the computing time required for the optimization process.

12.
Appl Opt ; 57(30): 9155-9163, 2018 Oct 20.
Article in English | MEDLINE | ID: mdl-30461905

ABSTRACT

Here, reciprocity and Babinet's principles were applied to the design of integrated plasmonic structures on silicon photonic waveguides. Numerical analyses and near-field optical microscopy observations show that one of the hybrid photonic-plasmonic structures exhibits high confinement and enhancement of the electric field, and, through Babinet's principle, the magnetic field of its complementary structure is confined and enhanced as well. Reciprocally, due to the modification of the electric and magnetic local density of states, enhanced emission of electric and magnetic dipoles by Purcell effect were obtained into specific silicon photonic modes. Such structures can be advantageously implemented for on-chip integrated single-photon sources.

13.
Opt Lett ; 43(20): 4863-4866, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30320769

ABSTRACT

A phase-resolved reflection-based near-field scanning optical microscopy (NSOM) technique with an original all-fiber configuration is presented. Our system consists of an intrinsically phase-stable common-path interferometer. The reflection from the waveguide input facet or from an integrated fiber Bragg grating is used as the reference beam. This arrangement effectively suppresses the phase drift caused by environmental fluctuations. By raster scanning a silicon atomic force microscope probe, we measure the complex near fields of the propagating and stationary waves in silicon nanowaveguides. Our robust, align-free, cost-effective, and shot-noise-limited near-field imaging technique paves the way for versatile optical characterizations of nanophotonic structures on a chip.

14.
Sci Adv ; 4(8): eaat2355, 2018 08.
Article in English | MEDLINE | ID: mdl-30151424

ABSTRACT

The ability to highly localize light with strong electric field enhancement is critical for enabling higher-efficiency solar cells, light sources, and modulators. While deep-subwavelength modes can be realized with plasmonic resonators, large losses in these metal structures preclude most practical applications. We developed an alternative approach to achieving subwavelength localization of the electric and displacement fields that is not accompanied by inhibitive losses. We experimentally demonstrate a dielectric bowtie photonic crystal structure that supports mode volumes commensurate with plasmonic elements and quality factors that reveal ultralow losses. Our approach opens the door to the extremely strong light-matter interaction regime with, simultaneously incorporating both an ultralow mode volume and an ultrahigh quality factor, that had remained elusive in optical resonators.

15.
Appl Opt ; 57(14): 3959-3967, 2018 May 10.
Article in English | MEDLINE | ID: mdl-29791366

ABSTRACT

In this work, we propose an inversion scheme to tailor the chromatic response of an all-dielectric structure. To this end, we couple, through a previously defined objective functional involving the concept of color difference, a forward solver with an optimization algorithm. The former is based on the differential method, whereas the latter is based on particle swarm optimization. The optimal geometrical parameters of the structure that generates a specific color are obtained through the solution of an approximation problem. We illustrate the performance of our inversion scheme through examples and discuss its limitations and potential applications.

16.
Sci Rep ; 7: 45726, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28374856

ABSTRACT

In this study, we investigated the improvement in the light output power of indium gallium nitride (InGaN)-based ultraviolet (UV), blue, and green light-emitting diodes (LEDs) by fabricating shallow periodic hole patterns (PHPs) on the LED surface through laser interference lithography and inductively coupled plasma etching. Noticeably, different enhancements were observed in the light output powers of the UV, blue, and green LEDs with negligible changes in the electrical properties in the light output power versus current and current versus voltage curves. In addition, confocal scanning electroluminescence microscopy is employed to verify the correlation between the enhancement in the light output power of the LEDs with PHPs and carrier localization of InGaN/GaN multiple quantum wells. Light propagation through the PHPs on the UV, blue, and green LEDs is simulated using a three-dimensional finite-difference time-domain method to confirm the experimental results. Finally, we suggest optimal conditions of PHPs for improving the light output power of InGaN LEDs based on the experimental and theoretical results.

17.
Nanotechnology ; 28(20): 205207, 2017 May 19.
Article in English | MEDLINE | ID: mdl-28323249

ABSTRACT

One of the most explored single quantum emitters for the development of nanoscale fluorescence lifetime imaging is the nitrogen-vacancy (NV) color center in diamond. An NV center does not experience fluorescence bleaching or blinking at room temperature. Furthermore, its optical properties are preserved when embedded into nanodiamond hosts. This paper focuses on the modeling of the local density of states (LDOS) in a plasmonic nanofocusing structure with an NV center acting as local illumination sources. Numerical calculations of the LDOS near such a nanostructure were done with a classical electric dipole radiation placed inside a diamond sphere as well as near-field optical fluorescence lifetime imaging of the structure. We found that Purcell factors higher than ten can be reached with diamond nanospheres of radius less than 5 nm and at a distance of less than 20 nm from the surface of the structure. Although the spatial resolution of the experiment is limited by the size of the nanodiamond, our work supports the analysis and interpretation of a single NV color center in a nanodiamond as a probe for scanning near-field optical microscopy.

18.
Appl Opt ; 55(36): 10263-10268, 2016 Dec 20.
Article in English | MEDLINE | ID: mdl-28059238

ABSTRACT

Integrated optical devices able to control light-matter interactions on the nanoscale have attracted the attention of the scientific community in recent years. However, most of these devices are based on silicon waveguides, limiting their use for telecommunication wavelengths. In this contribution, we propose an integrated device that operates with light in the visible spectrum. The proposed device is a hybrid structure consisting of a high-refractive-index layer placed on top of an ion-exchanged glass waveguide. We demonstrate that this hybrid structure serves as an efficient light coupler for the excitation of nanoemitters. The numerical and experimental results show that the device can enhance the electromagnetic field confinement up to 11 times, allowing a higher photoluminescence signal from nanocrystals placed on its surface. The designed device opens new perspectives in the generation of new optical devices suitable for quantum information or for optical sensing.

19.
Opt Express ; 23(18): 23195-207, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26368422

ABSTRACT

Optimal length of ZnO nanorods (NRs) on blue InGaN light-emitting diodes (LEDs) was investigated to improve the light-extraction efficiency (LEE) of the LED. X-ray diffraction, photoluminescence spectroscopy, and micro-Raman spectroscopy were employed to determine the structural and optical properties of the ZnO NRs with length of 300 nm and 5 µm grown by a hydrothermal method. From the conventional light output power versus injection current (L-I) measurement, we found that the light output power of the LEDs with 300-nm- and 5-µm-long ZnO NRs was approximately 14.6% and 40.7% greater, respectively, than that of the LED without the ZnO NRs at an operating current of 20 mA. In addition, there were almost no changes to the electrical properties of the ZnO-NR-coated LEDs. The effect of the length of the ZnO NRs on the LEE of the LEDs was theoretically verified with three-dimensional finite-difference time-domain (FDTD) analysis. The FDTD images of the optical power and far-field radiation patterns of the LEDs showed that more photons were guided to the out of the LED by the longer ZnO NRs than by the shorter ZnO NRs grown on the LEDs.

20.
Nano Lett ; 15(2): 849-56, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25562706

ABSTRACT

The enhancement and confinement of electromagnetic radiation to nanometer scale have improved the performances and decreased the dimensions of optical sources and detectors for several applications including spectroscopy, medical applications, and quantum information. Realization of on-chip nanofocusing devices compatible with silicon photonics platform adds a key functionality and provides opportunities for sensing, trapping, on-chip signal processing, and communications. Here, we discuss the design, fabrication, and experimental demonstration of light nanofocusing in a hybrid plasmonic-photonic nanotaper structure. We discuss the physical mechanisms behind the operation of this device, the coupling mechanisms, and how to engineer the energy transfer from a propagating guided mode to a trapped plasmonic mode at the apex of the plasmonic nanotaper with minimal radiation loss. Optical near-field measurements and Fourier modal analysis carried out using a near-field scanning optical microscope (NSOM) show a tight nanofocusing of light in this structure to an extremely small spot of 0.00563(λ/(2n(rmax)))(3) confined in 3D and an exquisite power input conversion of 92%. Our experiments also verify the mode selectivity of the device (low transmission of a TM-like input mode and high transmission of a TE-like input mode). A large field concentration factor (FCF) of about 4.9 is estimated from our NSOM measurement with a radius of curvature of about 20 nm at the apex of the nanotaper. The agreement between our theory and experimental results reveals helpful insights about the operation mechanism of the device, the interplay of the modes, and the gradual power transfer to the nanotaper apex.

SELECTION OF CITATIONS
SEARCH DETAIL
...