Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Transfusion ; 46(7): 1178-83, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16836565

ABSTRACT

BACKGROUND: An automated cell processing system (ACP 215, Haemonetics Corp.) can be used for the glycerolization and deglycerolization of RBC components, but the components must be 6 or fewer days old. Depending on the anticoagulant (CP2D)/additive solution (AS) used, deglycerolized RBCs can be stored at 1 to 6 degrees C for up to 14 days. This study evaluated in vitro variables of apheresis RBC stored for 6 and 14 days at 1 to 6 degrees C before glycerolization and 14 days after deglycerolization. STUDY DESIGN AND METHODS: Two units of CP2D/AS-3 leukoreduced RBCs were collected by apheresis from seven donors. One unit was glycerolized and frozen 6 days and the other 14 days after collection. All units were deglycerolized with the ACP 215 and stored at 1 to 6 degrees C for 14 days in AS-3. Several in vitro variables were evaluated during postdeglycerolization storage. RESULTS: All components had postdeglycerolization RBC recoveries greater than 81 percent and osmolalities of less than 400 mOsm per kg. No significant differences were noted in potassium and supernatant hemoglobin after 14 days of postdeglycerolization storage between RBCs frozen at 6 and 14 days after collection. After 14 days of postdeglycerolization storage, however, the pH, lactate, and ATP levels were slightly lower in RBCs frozen after 14 days. CONCLUSION: The ACP 215 can be used to glycerolize and deglycerolize apheresis RBC components that are up to 14 days of age. It is likely that apheresis components glycerolized at 14 days of age or less can be stored up to 14 days in AS-3 after deglycerolization, but this should be confirmed with in vivo survival studies.


Subject(s)
Blood Component Removal/standards , Erythrocyte Transfusion/standards , Adenosine Triphosphate/analysis , Blood Component Removal/methods , Blood Preservation/standards , Cryopreservation , Erythrocytes , Glycerol , Humans , Hydrogen-Ion Concentration , Lactates/analysis , Osmolar Concentration , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...