Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(10): e23672, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38775929

ABSTRACT

Cardiovascular disease (CVD) is a leading global cause of mortality, difficult to predict in advance. Evidence indicates that the copy number of mitochondrial DNA (mtDNAcn) in blood is altered in individuals with CVD. MtDNA released into circulation may act as a mediator of inflammation, a recognized factor in the development of CVD, in the long distance. This pilot study aims to test if levels of mtDNAcn in buffy coat DNA (BC-mtDNA), in circulating cellfree DNA (cf-mtDNA), or in DNA extracted from plasma extracellular vesicles (EV-mtDNA) are altered in CVD patients and if they can predict heart attack in advance. A group of 144 people with different CVD statuses (50 that had CVD, 94 healthy) was selected from the LifeLines Biobank according to the incidence of new cardiovascular event monitored in 6 years (50 among controls had heart attack after the basal assessment). MtDNAcn was quantified in total cf-DNA and EV-DNA from plasma as well as in buffy coat. EVs have been characterized by their size, polydispersity index, count rate, and zeta potential, by Dynamic Light Scattering. BC-mtDNAcn and cf-mtDNAcn were not different between CVD patients and healthy subjects. EVs carried higher mtDNAcn in subject with a previous history of CVD than controls, also adjusting the analysis for the EVs derived count rate. Despite mtDNAcn was not able to predict CVD in advance, the detection of increased EV-mtDNAcn in CVD patients in this pilot study suggests the need for further investigations to determine its pathophysiological role in inflammation.


Subject(s)
Cardiovascular Diseases , Cell-Free Nucleic Acids , DNA Copy Number Variations , DNA, Mitochondrial , Extracellular Vesicles , Humans , DNA, Mitochondrial/genetics , DNA, Mitochondrial/blood , Extracellular Vesicles/metabolism , Extracellular Vesicles/genetics , Male , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/genetics , Female , Pilot Projects , Cardiovascular Diseases/genetics , Cardiovascular Diseases/blood , Middle Aged , Case-Control Studies , Aged , Prospective Studies
2.
Materials (Basel) ; 17(4)2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38399094

ABSTRACT

Natural and renewable sources of calcium carbonate (CaCO3), also referred to as "biogenic" sources, are being increasingly investigated, as they are generated from a number of waste sources, in particular those from the food industry. The first and obvious application of biogenic calcium carbonate is in the production of cement, where CaCO3 represents the raw material for clinker. Overtime, other more added-value applications have been developed in the filling and modification of the properties of polymer composites, or in the development of biomaterials, where it is possible to transform calcium carbonate into calcium phosphate for the substitution of natural hydroxyapatite. In the majority of cases, the biological structure that is used for obtaining calcium carbonate is reduced to a powder, in which instance the granulometry distribution and the shape of the fragments represent a factor capable of influencing the effect of addition. As a result of this consideration, a number of studies also reflect on the specific characteristics of the different sources of the calcium carbonate obtained, while also referring to the species-dependent biological self-assembly process, which can be defined as a more "biomimetic" approach. In particular, a number of case studies are investigated in more depth, more specifically those involving snail shells, clam shells, mussel shells, oyster shells, eggshells, and cuttlefish bones.

3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108462

ABSTRACT

The nervous and immune systems go hand in hand in causing inflammation and pain. However, the two are not mutually exclusive. While some diseases cause inflammation, others are caused by it. Macrophages play an important role in modulating inflammation to trigger neuropathic pain. Hyaluronic acid (HA) is a naturally occurring glycosaminoglycan that has a well-known ability to bind with the cluster of differentiation 44 (CD44) receptor on classically activated M1 macrophages. Resolving inflammation by varying the molecular weight of HA is a debated concept. HA-based drug delivery nanosystems such as nanohydrogels and nanoemulsions, targeting macrophages can be used to relieve pain and inflammation by loading antinociceptive drugs and enhancing the effect of anti-inflammatory drugs. This review will discuss the ongoing research on HA-based drug delivery nanosystems regarding their antinociceptive and anti-inflammatory effects.


Subject(s)
Hyaluronic Acid , Inflammation , Humans , Hyaluronic Acid/metabolism , Inflammation/drug therapy , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use , Hyaluronan Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...