Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Vet Med Sci ; 10(4): e1494, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38853588

ABSTRACT

BACKGROUND: Heavy metals are one of the most important environmental pollutants in marine coastal ecosystems. Cadmium is a heavy metal that enters to marine environments via industrial wastes and oil production activities. OBJECTIVES: This study were done to determine the toxicity of cadmium to Litopenaeus vannamei and to evaluate the histological changes in gill tissues after exposure to sublethal concentrations of cadmium at different salinities. METHODS: For this reason, toxicity test was done to determine the lethal concentration (LC50) of cadmium for whiteleg shrimp. According to the calculated LC50 amount, sublethal doses of cadmium were used to determine its histological effects in different salinity during 2 weeks exposing period. RESULTS: LC50 of cadmium for 96 h for whiteleg shrimp was 6.56 mg/L. Histological alterations in the gill were observed in L. vannamei after 14 days exposure to different concentrations of cadmium and salinity. Histopathological index was increased in a dose-dependent manner. CONCLUSION: Our findings showed that doses lower than 2 mg/L have repairable effects on gill structure, but the concentration of 2 mg/L cadmium leaves irreparable and destructive effects on the gill tissue.


Subject(s)
Cadmium , Gills , Penaeidae , Salinity , Water Pollutants, Chemical , Animals , Penaeidae/drug effects , Gills/drug effects , Gills/pathology , Cadmium/toxicity , Water Pollutants, Chemical/toxicity , Lethal Dose 50 , Dose-Response Relationship, Drug
2.
Microsc Res Tech ; 87(7): 1429-1435, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38400640

ABSTRACT

The present study was conducted to investigate the biochemical and histological changes of liver tissue in Siberian sturgeon (Acipenser baerii) exposed to different doses of bisphenol A (BPA). One hundred and eighty pieces of 1-year-old A. baerii with an average weight of 200-250 g bought and randomly distributed in 18 tanks (n = 10). After 2 weeks of adaptation, the fish received intraperitoneal injections of 1, 10, and 100 µg/g/week BPA and µg/g/week of 17ß-estradiol intraperitoneally. The solvent control group received only peanut oil, while the control group did not receive any injections. In order to investigate histological changes of the liver, after 2 weeks the liver samples were taken, fixed in 10% formalin solution and slides prepared by routine histological methods. For assaying antioxidant defense status, the liver tissue from three fish of each replicates was captured and after homogenization, activity of catalase, superoxide dismutase, and glutathione peroxidase and malondialdehyde measured. The most important histological changes observed in the liver tissue were: vacuolation of hepatocytes, nuclear hypertrophy, necrosis of liver cells, expansion of sinusoids, and accumulation of fat cells. In the highest dose, the intensity of tissue changes increased. Activity of antioxidant enzymes and malondialdehyde content increased in fish exposed to 100 µg/g/week BPA in compare with other groups (p < .05). According to our findings, it could be concluded that liver histology was affected by BPA and tissue damage had occurred, which had led to changes in blood parameters. Also, the obtained results showed that the high concentrations of BPA used in this study stimulate the antioxidant defense. RESEARCH HIGHLIGHTS: BPA evoke oxidative stress in Siberian sturgeons in high dose of exposure. Severity of liver histologic lesions was dose dependent.


Subject(s)
Antioxidants , Benzhydryl Compounds , Catalase , Fishes , Liver , Phenols , Superoxide Dismutase , Animals , Phenols/toxicity , Liver/drug effects , Benzhydryl Compounds/toxicity , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Catalase/metabolism , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism , Oxidative Stress/drug effects , Hepatocytes/drug effects
3.
J Artif Organs ; 26(4): 255-274, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37119315

ABSTRACT

In recent years, due to the increase in diseases that require organ/tissue transplantation and the limited donor, on the other hand, patients have lost hope of recovery and organ transplantation. Regenerative medicine is one of the new sciences that promises a bright future for these patients by providing solutions to repair, improve function, and replace tissue. One of the technologies used in regenerative medicine is three-dimensional (3D) bioprinters. Bioprinting is a new strategy that is the basis for starting a global revolution in the field of medical sciences and has attracted much attention. 3D bioprinters use a combination of advanced biology and cell science, computer science, and materials science to create complex bio-hybrid structures for various applications. The capacity to use this technology can be demonstrated in regenerative medicine to make various connective tissues, such as skin, cartilage, and bone. One of the essential parts of a 3D bioprinter is the bio-ink. Bio-ink is a combination of biologically active molecules, cells, and biomaterials that make the printed product. In this review, we examine the main bioprinting strategies, such as inkjet printing, laser, and extrusion-based bioprinting, as well as some of their applications.


Subject(s)
Bioprinting , Tissue Engineering , Humans , Tissue Engineering/methods , Bioprinting/methods , Regenerative Medicine/methods , Biocompatible Materials , Technology , Printing, Three-Dimensional , Tissue Scaffolds
4.
Aquac Nutr ; 2023: 1808640, 2023.
Article in English | MEDLINE | ID: mdl-36860979

ABSTRACT

The aim of this study was to investigate the synbiotic effects of Pediococcus acidilactici (PA) and isomaltooligosaccharide (IMO) on the performance of juvenile common carp (Cyprinus carpio). A total of 360 fish (17.22 ± 0.19 g) were randomly divided into six groups with three replicates of 20 fish each. The trial continued for 8 weeks. The control group was fed only basal diet; PA was fed basal diet supplemented with 1 g/kg (1010 CFU/kg) PA, IMO5 (5 g/kg IMO), IMO10 (10 g/kg IMO), PA-IMO5 (1 g/kg PA and 5 g/kg IMO), and PA-IMO10 (1 g/kg PA and 10 g/kg IMO). The results indicated that the diet containing 1 g/kg PA and 5 g/kg IMO significantly increased the fish growth performance and decreased the feed conversion ratio (p < 0.05). Overall, blood biochemical parameters, serum (lysozyme, complements C3 and C4) and mucosal (protein, total immunoglobulin, and lysozyme) immune responses, and antioxidant defense of fish also improved in the PA-IMO5 group (p < 0.05). Therefore, a combination of 1 g/kg (1010 CFU/kg) PA and 5 g/kg IMO can be recommended as a beneficial synbiotic additive and immunostimulant in juvenile common carp.

5.
Biomed Eng Online ; 21(1): 86, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503442

ABSTRACT

BACKGROUND: Three-dimensional (3D) printing is a capable approach for the fabrication of bone tissue scaffolds. Nevertheless, a purely made scaffold such as polylactic acid (PLA) may suffer from shortcomings and be restricted due to its biological behavior. Gelatin, hydroxyapatite and platelet-rich plasma (PRP) have been revealed to be of potential to enhance the osteogenic effect. In this study, it was tried to improve the properties of 3D-printed PLA scaffolds by infilling them with gelatin-nano-hydroxyapatite (PLA/G-nHA) and subsequent coating with PRP. For comparison, bare PLA and PLA/G-nHA scaffolds were also fabricated. The printing accuracy, the scaffold structural characterizations, mechanical properties, degradability behavior, cell adhesion, mineralization, systemic effect of the scaffolds on the liver enzymes, osteocalcin level in blood serum and in vivo bone regeneration capability in rat critical-sized calvaria defect were evaluated. RESULTS: High printing accuracy (printing error of < 11%) was obtained for all measured parameters including strut thickness, pore width, scaffold density and porosity%. The highest mean ultimate compression strength (UCS) was associated with PLA/G-nHA/PRP scaffolds, which was 10.95 MPa. A slow degradation rate was observed for all scaffolds. The PLA/G-nHA/PRP had slightly higher degradation rate, possibly due to PRP release, with burst release occurred at week 4. The MTT results showed that PLA/G-nHA/PRP provided the highest cell proliferation at all time points, and the serum biochemistry (ALT and AST level) results indicated no abnormal/toxic influence caused by scaffold biomaterials. Superior cell adhesion and mineralization were obtained for PLA/G-nHA/PRP. Furthermore, all the developed scaffolds showed bone repair capability. The PLA/G-nHA/PRP scaffolds could better support bone regeneration than bare PLA and PLA/G-nHA scaffolds. CONCLUSION: The PLA/G-nHA/PRP scaffolds can be considered as potential for hard tissue repair.


Subject(s)
Durapatite , Platelet-Rich Plasma , Rats , Animals , Durapatite/chemistry , Gelatin/metabolism , Gelatin/pharmacology , Tissue Scaffolds/chemistry , Osteogenesis , Platelet-Rich Plasma/metabolism , Printing, Three-Dimensional , Skull , Tissue Engineering/methods
6.
Nanotoxicology ; 16(1): 88-113, 2022 02.
Article in English | MEDLINE | ID: mdl-35201945

ABSTRACT

There is a global research interest in metal nanoparticles (MNPs) due to their diverse applications, rapidly increasing use, and increased presence in the aquatic environment. Currently, most MNPs in the environment are at levels unlikely to cause overt toxicity. Sub-lethal effects that MNPs may induce, notable immunotoxicity, could however have significant health implications. Thus, deciphering the immunological interactions of MNPs with aquatic organisms constitutes a much-needed area of research. In this article, we critically assess the evidence for immunotoxic effects of MNPs in bivalves and fish, as key wildlife sentinels with widely differing ecological niches that are used as models in ecotoxicology. The first part of this review details the properties, fate, and fundamental physicochemical behavior of MNPs in the aquatic ecosystem. We then consider the toxicokinetics of MNP uptake, accumulation, and deposition in fish and bivalves. The main body of the review then focuses on immune reactions in response to MNPs exposure in bivalves and fish illustrating their immunotoxic potential. Finally, we identify major knowledge gaps in our current understanding of the implications of MNPs exposure for immunological functions and the associated health consequences for bivalves and fish, as well as the general lessons learned on the immunotoxic properties of the emerging class of nanoparticulate contaminants in fish and bivalves.


Subject(s)
Bivalvia , Metal Nanoparticles , Nanoparticles , Water Pollutants, Chemical , Animals , Ecosystem , Fishes , Metal Nanoparticles/toxicity , Nanoparticles/toxicity , Water Pollutants, Chemical/toxicity
7.
Article in English | MEDLINE | ID: mdl-35026400

ABSTRACT

The present study tried to measure the formation of melanomacrophage centers (MMCs) in various organs of male and female goldfish exposed to nonylphenol (NP) and aimed to assess its relationship with the main sexual hormones, estrogen receptor expression, and the pigment content of the MMCs. Immature goldfish were exposed to 10-6 and 10-7 M NP for 25 days. After obtaining blood for measuring testosterone and estrogen (E2) levels, tissue samples were collected from various organs for histological studies, quantifying pigments using ImageJ software and chemical analysis, and measuring ERα gene expression. Results showed that the order of forming MMCs in various organs exposed to NP was liver > spleen > kidney, and the order of ERα gene expression was liver > testes > spleen > kidney in the male, and liver > spleen > kidney > ovaries in the female. Among the three pigments present in MMCs after exposure to the two doses of NP, melanin was more obvious (especially in the liver) and increased mostly in a dose-dependent manner in both sexes (especially in the male). Chemical analyses confirmed these results. Measurement of testosterone and E2 level in male and female goldfish showed that NP had more effect on the concentration of these hormones in male fish, indicating more endocrine-disrupting potential of NP against the male fish. Generally, the increase of melanin content of melanomacrophage centers coincided with the increase of ERα gene expression and decrease of testosterone level in goldfish after exposure to NP.


Subject(s)
Estrogen Receptor alpha , Goldfish , Animals , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogens/toxicity , Female , Gene Expression , Goldfish/metabolism , Male , Phenols , Testosterone/metabolism
8.
J Exp Zool B Mol Dev Evol ; 338(3): 155-169, 2022 05.
Article in English | MEDLINE | ID: mdl-34813182

ABSTRACT

The respiratory trees present only in the class Holothuroidea and the rest of the echinoderms lack it. Only some holothurian species have the ability to regenerate their respiratory trees after autotomy. Therefore, respiratory trees could be considered as a suitable model to assess the regeneration mechanisms in animals. In the present study, the respiratory tree regeneration after posterior evisceration were examined in Holothuria parva during 75 days. Since autotomy reduces antioxidant defense in the organisms, in the present study alterations of antioxidant enzymes were also evaluated during the experiment. H. parva is the dominant intertidal species distributed in the north of the Persian Gulf. In the present study, H. parva ejected the left respiratory tree, the digestive tract and supportive mesenteries from the anus, about 1-2 min after potassium chloride injection. The closure of the opening at the posterior ends of the body was the first reaction to the injury. Seven days after evisceration, the small bud formed on the dorsal side of the cloaca which was covered with the coelomic epithelium of cloaca. The coelomic epithelium started to proliferate to undifferentiated cells on the apex of the buds. The primary respiratory tree consisted of the luminal cuboidal epithelium and thin connective tissue surrounded by the slender coelomic epithelium. This preliminary organ was observed at the apex of the buds, 13 days after evisceration. Gradually, myoepithelial cells arranged around a longitudinal axis and formed a circular muscle. The primitive branches of primary respiratory tree started to form 18 days after evisceration. Forty days after evisceration, the luminal epithelium of the respiratory tree had the same appearance as the intact luminal epithelium. The regenerated respiratory tree was histomorphologically very similar to an intact respiratory tree 56 days postevisceration, but unlike that, it was not yet wrapped around the intestine and was completely separate from it. Despite the development of the regenerating respiratory tree, no wrapping around the intestine was observed until the end of the experiment. According to the results, the activity of the catalase (CAT) and superoxide dismutase (SOD) in the muscle homogenate was significantly higher than the control 5 days after evisceration. The CAT and SOD levels gradually decreased in eviscerated animals. The lipid peroxidation level followed a decreasing trend in the eviscerated animals during the experiment. However, its value reduced to the control level at the end of the experiment.


Subject(s)
Holothuria , Sea Cucumbers , Animals , Antioxidants , Holothuria/physiology , Superoxide Dismutase , Trees
9.
Article in English | MEDLINE | ID: mdl-33540188

ABSTRACT

This study was done to evaluate the effects of Bisphenol A (BPA) on Siberian sturgeon (Acipenser baerii). As liver is the main organ in the homeostatic adjustments to stress, we used a proteomics method to address molecular response in this tissue. Also, we compared the levels of vitellogenin in plasma and mucus to propose that the last one be a non-invasive method to analyze this biomarker. The fish received 1, 10, and 100 µg g-1 week-1 BPA intraperitoneally for two weeks. The samples were taken on days 0, 7, and 14. Plasma vitellogenin level increased as the highest value was recorded in the group with 100 µg g-1 week-1 of BPA. Changes in the mucus and blood vitellogenin showed a similar pattern, suggesting that mucus could be used for evaluating the changes in blood vitellogenin. Comparative proteomics was used to determine the proteome of the liver of A. baerii in the highest dose of BPA in comparison with the control. Sixteen proteins were identified that their expression changed at least twice between the studied groups. The proteomic results showed that BPA increased the expression of proteins involved in the detoxification and metabolism, activated glycolysis, and produced necrosis in the liver.


Subject(s)
Benzhydryl Compounds/adverse effects , Endocrine Disruptors/adverse effects , Environmental Pollutants/adverse effects , Fish Proteins/metabolism , Fishes/metabolism , Phenols/adverse effects , Vitellogenins/metabolism , Animals , Fish Proteins/analysis , Fish Proteins/blood , Fishes/blood , Liver/drug effects , Liver/metabolism , Proteome/analysis , Proteome/metabolism , Vitellogenins/analysis , Vitellogenins/blood
10.
Basic Clin Neurosci ; 12(4): 523-532, 2021.
Article in English | MEDLINE | ID: mdl-35154592

ABSTRACT

INTRODUCTION: Retinal Pigment Epithelium (RPE) layer deterioration is a leading cause of Age-Related Macular Degeneration (AMD), i.e., the most significant reason for irreversible blindness. The present study aimed to track the Neurosphere-Derived (NS) from Bone Marrow Stromal Stem Cells (BMSCs) grafted into the sub-retinal space (destruction of the RPE layer by sodium iodate). METHODS: RPE degeneration model was performed using the injection of 5% sodium iodate performed in the retro-orbital sinus of Wistar rats. BMSCs were extracted from the examined rat femur and induced into NS, using EGF, bFGF, and B27. BrdU-NS labeled cells were transplanted into the sub-retinal space. For detecting BMSCs and NS markers, immunocytochemistry was performed. Moreover, immunohistochemical was conducted for tracking the transplanted cells in the RPE and sensory retina. RESULTS: The immunocytochemistry of BMSCs cells displayed the expression of mesenchymal stem cells markers (CD90; 99%±1), CD166 (98%±2), CD44 (99%±1). Additionally, the expression of neural lineage markers in NS, such as SOX2, OCT4, Nanog, Nestin, and Neurofilaments (68, 160, 200) revealed the differentiation from BMSCs. Tracking BrdU-NS labeled suggested these aggregations in most layers of the retina. CONCLUSION: Our study data indicated that BMSCs derived neurosphere had the potential to migrate in injured retinal and integrate into the neurosensory retina. These data can be useful in finding safe cells for replacement therapy in AMD.

11.
Fish Physiol Biochem ; 47(1): 153-162, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33242190

ABSTRACT

A completely randomized experimental design carried out to investigate the effects of different levels of Pediococcus acidilactici (PA) including 0 (basal diet as a control diet), 1 × 106, 2 × 106, 4 × 106, and 8 × 106 colony-forming unit (CFU) per gram of the diet for 60 days on the mucosal immunity responses, growth, and reproductive performance, in zebrafish, Danio rerio (with mean weigh ± SE: 120 ± 10 mg). The obtained results revealed that the best growth and reproduction indices were related to the concentration of 4 × 106 CFU PA g-1 diet (P < 0.05). The maximum activities of mucosal immune responses including total protein, alternative complement system, IgM, and lysozyme were observed in the fish fed with 4 × 106 CFU PA g-1 diet (P < 0.05). Furthermore, the maximum alkaline phosphatase activity of skin mucus was recorded in the fish fed with 8 × 106 CFU PA g-1 diet (P < 0.05). Fish fed with 4 × 106 CFU PA g-1 diet had the highest villus length and width of the intestine (P < 0.05). Supplementing the diet with 4 × 106 CFU PA g-1 diet more significantly enhanced Cyp19a gene expression in comparison with this in other groups. Hence, PA with a concentration of 4 × 106 CFU g-1 diet can be considered as a proper level of probiotic for improving the health, growth, and reproductive performance of the D. rerio.


Subject(s)
Pediococcus acidilactici , Probiotics/pharmacology , Zebrafish , Alkaline Phosphatase/immunology , Animals , Aromatase/genetics , Complement System Proteins/immunology , Female , Immunity, Mucosal , Immunoglobulin M/immunology , Intestines/growth & development , Male , Mucus/enzymology , Mucus/immunology , Muramidase/immunology , Reproduction , Skin/enzymology , Skin/immunology , Zebrafish/genetics , Zebrafish/growth & development , Zebrafish/immunology , Zebrafish/physiology , Zebrafish Proteins/genetics
12.
J Cell Physiol ; 236(7): 4966-4972, 2021 07.
Article in English | MEDLINE | ID: mdl-33305832

ABSTRACT

The rapid spread of coronavirus disease 2019 (COVID-19), a disease caused by severe acute respiratory syndrome coronavirus 2, poses a huge demand for immediate diagnosis. Real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) of nasopharyngeal (NP) and oropharyngeal (OP) swabs have been used to confirm the clinical diagnosis. To avoid the risk of viral-exposure of laboratory workers, thermal inactivation is currently recommended but has unknown effects on the accuracy of the rRT-PCR results. Thirty-six NP/OP specimens were collected from COVID-19 patients and subjected to thermal inactivation (60°C for 30 min) or the RNA extraction processes to activate the form. Here, our data showed that the concentration of extracted-RNA increases upon thermal inactivation compared to the active form (p = .028).  Significantly higher levels of RNA copy number were obtained in inactivated compared to the active samples for both N and ORF1ab genes (p = .009, p = .032, respectively). Thermal inactivation elevated concentration and copy number of extracted-RNA, possibly through viral-capsid degradation and/or nucleoprotein denaturation.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Clinical Laboratory Techniques , RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Adult , Aged , Aged, 80 and over , COVID-19/genetics , COVID-19 Testing/statistics & numerical data , Clinical Laboratory Techniques/methods , Female , Humans , Male , Middle Aged , Nasopharynx/chemistry , Nasopharynx/virology , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics
13.
Vet Res Forum ; 11(1): 83-88, 2020.
Article in English | MEDLINE | ID: mdl-32537111

ABSTRACT

This study was undertaken to investigate the effects of feeding rainbow trout (Oncorhynchus mykiss) broodstocks with different ratio of plant oils to evaluate the changes in antioxidant defense status in the progenies. In the experimental diets, fish oil was replaced with different combination of plant oils including corn oil, olive oil, sunflower oil, and coconut oil, to gain different levels of polyunsaturated fatty acids (PUFA) and highly unsaturated fatty acids (HUFA) in the experimental diets. Fish fed eight weeks with experimental diets before reproduction. After spawning, samples were taken on days 0, 5, 10, 15, 20, 25, 30 and 35 after fertilization. The samples were homogenized, centrifuged and the supernatant was removed for determination of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activity and malondialdehyde (MDA) content. Results showed that SOD activity was significantly increased from the first sampling to day 35 in all treatment groups. The CAT activity showed a downward trend, as the highest CAT activity was observed in the eggs immediately after fertilization. The GPX activity declined until day five and then showed an increasing trend. The MDA content did not show significant changes in different groups and at different sampling times. The antioxidant enzymes activity was significantly influenced by the dietary PUFA level in the experimental groups but no change in MDA content was recorded, suggesting that the different percentages of fish oil replacement used in this study could not result in oxidative stress in early life stages of O. mykiss.

14.
J Biomed Mater Res A ; 108(11): 2138-2149, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32319166

ABSTRACT

Combat or burn injuries are associated with a series of risks, such as microbial infection, an elevated level of inflammatory response, and pathologic scar tissue formation, which significantly postpone wound healing and also lead to impaired repair. Skin engineering for wound healing requires a biomimetic dressing substrate with ideal hydrophilicity, holding antioxidant and antimicrobial properties. In addition, available bioactive specification is required to reduce scar formation, stimulate angiogenesis, and improve wound repair. In this study, we successfully fabricated chitosan (Ch)-based hydrogel enriched with isolated exosome (EXO) from easy-accessible stem cells, which could promote fibroblast cell migration and proliferation in vitro. Full-thickness excisional wound model was used to investigate the in vivo dermal substitution ability of the fabricated hydrogel composed Ch and EXO substrates. Our finding confirmed that the wounds covered with Ch scaffold containing isolated EXO have nearly 83.6% wound closure ability with a high degree of re-epithelialization, whereas sterile gauze showed 51.5% of reduction in wound size. In summary, obtained results imply that Ch-glycerol-EXO hydrogel construct can be utilized at the full-thickness skin wound substitution and skin tissue engineering.


Subject(s)
Bandages , Chitosan/pharmacology , Exosomes , Hydrogels/pharmacology , Wound Healing , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cells, Cultured , Chitosan/chemistry , Exosomes/chemistry , Humans , Hydrogels/chemistry , Mice , Mice, Inbred BALB C , Skin/drug effects , Wound Healing/drug effects
15.
Cytotechnology ; 72(3): 367-376, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32144633

ABSTRACT

The skin mucus in lower vertebrates such as fish with strong innate immune system has many unique and valuable bioactive compounds that can be used for inducing apoptosis in cancer cells. This study was looking for the cytotoxic potential of mucus from the two fish species, including round goby (Neogobius melanostomus) and common carp (Cyprinus carpio), and inducing apoptosis in MCF7 and LNCaP cancer cell lines via influencing P53 gene expression and cell cycle arrest. Results showed that the both mucus types have cytotoxic effects on the both cancer cell lines whereas they have no severe effect on normal primary fibroblast cells. In addition, round goby mucus and common carp mucus selectively induced apoptosis in the LNCaP and MCF7 cells, respectively, through up-regulating P53 gene and arresting cell cycle at the G1 phase. Taken together, this study suggested that the both mucus types can selectively influence P53 pathway and induce apoptosis in especial cancer cells. The skin mucus derived from round Goby and common Carp can be a promising candidate for investigation about apoptosis and molecular targeting therapy in cancer.

16.
Tissue Cell ; 56: 52-59, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30736904

ABSTRACT

BACKGROUND: The induction of retinal pigmented epithelium cells (RPE) is one of the most important objectives in research focused on treating retinal degenerative diseases. The present study aims to differentiate human adipose stem cells (hADSCs) into RPE cells for replacement therapies in cases of retinal degenerative diseases. METHODS: Lipoaspirate-derived human adipose stem cells (LA-hADSCs) were obtained from abdominal samples and examined by immunocytochemistry for the expression of mesenchymal adipose stem cell markers. RPE cells were also obtained from human samples and cultured to be used as control after being examined for the expression of their designated markers. hADSCs differentiated into RPE cells after 80 days using chemical inducers in one steps. The differentiated cells were then compared to control cells in marker expression. The differentiated cells were also examined under a scanning electron microscope for the presence of apical microvilli and cell connection. RESULTS: Cultured hADSCs at the fourth passage was shown to express the surface markers CD90 (98 ± 2%), CD11b (96 ± 3%), and CD105 (95 ± 4%). The RPE cells obtained from human samples expressed the marker RPE65 quite well. 80 days after differentiation, the previously hADSCs expressed both RPE65 (100%) and CRALBP (96 ± 1%) and were thus significantly similar to the RPE cells obtained from human samples. Morphologically, differentiated cells appeared to have epithelial and cytoplasmic pigment granules. Observations using a scanning electron microscope recorded clear connections among the differentiated RPE cells and revealed apical microvilli. CONCLUSION: Human adipose stem cells can differentiate into retinal pigmented epithelium cells, which can be used in cell replacement therapy for degenerative diseases including age-related macular degeneration (AMD) as well as retinitis pigmentosa (RP).


Subject(s)
Cell Differentiation/drug effects , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Retinal Degeneration/therapy , Retinal Pigment Epithelium/transplantation , Cell Shape , Cells, Cultured , Culture Media/chemistry , Humans , Mesenchymal Stem Cells/drug effects , Neurons/drug effects , Neurons/transplantation , Retina/drug effects , Retina/pathology , Retina/transplantation , Retinal Degeneration/pathology , Retinal Pigment Epithelium/cytology , Small Molecule Libraries/administration & dosage
17.
Aquat Toxicol ; 209: 159-167, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30780113

ABSTRACT

The expression of estrogen receptors (ERs) and their roles in important cell processes such as apoptosis in the macrophages exposed to estrogen/xenoestrogen have remained a complex secret. This study focused on the expression of estrogen receptors (ERs) and the stimulation of apoptosis in the macrophages from the two sexes of goldfish (Carassius auratus) exposed to 17-ßestradiol (E2) and nonylphenol (NP) under in vivo and in vitro conditions. For the in vivo experiment, fish were exposed to NP (10-6 M and 10-7 M) and E2 (10-6 M) for 24 days. Then, the head kidney macrophages from the male and the female goldfish were isolated and assayed. For the in vitro experiments, the macrophages derived from the two sexes were cultured in L-15 medium and exposed to E2 (150 nM) and NP (10 nM and 150 nM) for 3 days. The results showed that the three isoforms of ERs (ERα, ERß1, ERß2) were expressed in the goldfish macrophages. After the exposure of macrophages to NP and E2, sex-specific increase of ERs expression and apoptosis were observed (P < 0.05). The expression of ERα after NP treatment showed the highest alteration, with the response being concentration-dependent. The most alteration of ERs expression were observed in the in vivo experiment. This study provides insight to understand how exposure of the goldfish macrophages to E2 and NP can up-regulate the transcript levels of estrogen receptor subtypes and stimulate apoptosis.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Estrogens/toxicity , Goldfish/metabolism , Macrophages/metabolism , Models, Biological , Phenols/toxicity , Animals , Apoptosis/drug effects , Cells, Cultured , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Female , Gene Expression Regulation/drug effects , Goldfish/genetics , Macrophages/drug effects , Male , Toxicity Tests , Water Pollutants, Chemical/toxicity
18.
Cytotechnology ; 71(1): 261-266, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30600462

ABSTRACT

Regarding challenges in isolation and maintenance of cultured heart cells, introduction of new in vitro heart model that is stable and exhibits long-term spontaneously contracting cell aggregates (SCCs), whose electrophysiological properties are comparable to the human heart, is required. This research aimed to establish cardiac primary cells and to evaluate the effects of culture conditions. Also the effect of fish age on beating SCC and cardiac cell morphology were studied. Twelve healthy grass carps (Ctenopharyngodon idella) were divided into four groups based on their age. Non-enzymatic explant culture was used and heart explants were incubated at 21-31 °C for 60 days. After proliferation of the cardiac primary cells, changes in their morphology and their beatings were recorded. The results showed that the explants derived from different age of grass carp fish are fully viable and proliferative with formation of SCC for a long period of time. By increasing the number of adhered cells, the cardiac primary cells became more flat and elongated. Increasing the medium temperature and fetal bovine serum concentration in culture medium led to decline and enhancement in beat frequencies of heart cell aggregates, respectively. Also, grass carp heart explant had high potential in regeneration (especially in young fish) and thus high feasibility to generate stable long-term cultures. In general, it seems that explant culture of heart from grass carp can be considered as a promising tool in heart research area.

19.
Fish Shellfish Immunol ; 86: 125-134, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30453043

ABSTRACT

The severe decline in population of sturgeons due to pollution highlighted poor understanding about the immunotoxicological responses of sturgeons. This study was designed in three experiments to find out how nonylphenol (NP) interrupts some pro-inflammatory immune parameters in macrophages from Persian sturgeon (Acipencer persicous) as the oldest vertebrate model conserving intact innate immune system. After determination of IC50 values of NP (200 µM), some pro-inflammatory immune parameters and induced apoptosis in macrophages at low dose (10 nM) and high dose (100 nM) of NP and of 17ß estradiol (E2) (positive control) were determined after 6, 24 and 48 h of the exposure (as the first experiment). The two doses of NP induced pro-inflammatory reaction and apoptosis with strong correlations, whereas this result was observed more obviously in high dose of E2. In the second experiments, the macrophages were exposed to the two doses of NP along with estrogen receptor alpha (ERα) antagonist, which consequently decreased the induction of pro-inflammatory reactions. Similarly, in the third experiment, NF-KB and ERα antagonists were used and pro-inflammatory reactions decreased compared to the control group (P < 0.05). Decreasing correlation between immune parameters following the second and third experiments verified interaction between ERα and NF-KB pathways. Thus, NP could be immune disrupter and apoptosis inducer in sturgeon macrophages in vitro, even in low dose. For the first time, this study revealed that NP can induce pro-inflammatory reactions in macrophages derived from sturgeons.


Subject(s)
Estrogen Receptor alpha/metabolism , Macrophages/drug effects , NF-kappa B/metabolism , Phenols/toxicity , Animals , Cells, Cultured , Estrogen Receptor alpha/antagonists & inhibitors , Fishes
20.
Article in English | MEDLINE | ID: mdl-29738886

ABSTRACT

One of the challenges of sturgeon aquaculture is that sturgeon takes an extended amount of time to reach sexual maturity. The pattern of the protein expression in relation to the late maturity of sturgeon can help to better understand changes in sexual maturity. 17ß-estradiol (E2), testosterone (T) and vitellogenin (Vtg) levels were examined at all stages of sexual maturation in Sterlet sturgeon (Acipenser ruthenus). Two-dimensional gel electrophoresis and mass spectrometry analysis were used to show the pattern of the ovarian proteins. The T levels increased from the previtellogenic to the postvitellogenic stages (P < 0.05) and Vtg showed a decremental pattern in pre- and postvitellogenic, and atresia (not significantly). The analysis showed 900 protein spots, 19 of which were successfully identified and had significant differences between the previtellogenic and the vitellogenic groups (P < 0.05). Among the identified proteins, 40% involved in cell defense (heat shock protein, Glutathione peroxidase, natural killer enhancing factor, peroxiredoxin-2), 30% in transcription and translation (constitutive photomorphogenesis 9 and Ybx2), 20% in metabolism and energy production (triose-phosphate isomerase (TPI)) and 10% in transport (glycolipid transfer protein). In the vitellogenic stage, the proteins were related to metabolism and energy production (TPI, ES1, creatin kinase, enolase, nucleoside diphosphate kinase, 50%), cell defense (thioredoxin and dislophid isomerase, 20%) and transport (fatty acid binding protein, 10%). Our findings show changes in protein expression pattern from cell defense to metabolism during egg development.


Subject(s)
Fish Proteins/analysis , Fishes/growth & development , Ovary/growth & development , Animals , Estradiol/blood , Female , Fish Proteins/metabolism , Fishes/blood , Fishes/metabolism , Ovary/metabolism , Ovary/ultrastructure , Proteomics , Sexual Maturation , Testosterone/blood , Vitellogenins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...