Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
J Struct Biol ; 194(2): 164-70, 2016 May.
Article in English | MEDLINE | ID: mdl-26876163

ABSTRACT

We describe the functionality and design of the Volume slicer - a web-based slice viewer for EMDB entries. This tool uniquely provides the facility to view slices from 3D EM reconstructions along the three orthogonal axes and to rapidly switch between them and navigate through the volume. We have employed multiple rounds of user-experience testing with members of the EM community to ensure that the interface is easy and intuitive to use and the information provided is relevant. The impetus to develop the Volume slicer has been calls from the EM community to provide web-based interactive visualisation of 2D slice data. This would be useful for quick initial checks of the quality of a reconstruction. Again in response to calls from the community, we plan to further develop the Volume slicer into a fully-fledged Volume browser that provides integrated visualisation of EMDB and PDB entries from the molecular to the cellular scale.


Subject(s)
Image Processing, Computer-Assisted/statistics & numerical data , Imaging, Three-Dimensional/statistics & numerical data , Microscopy, Electron , Software , Databases, Protein , Humans , Internet
3.
Nucleic Acids Res ; 44(D1): D385-95, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26476444

ABSTRACT

The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the 'best structures' for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data.


Subject(s)
Databases, Protein , Protein Conformation , Internet , Microscopy, Electron , Models, Molecular , User-Computer Interface
4.
Bioinformatics ; 30(23): 3396-8, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25143289

ABSTRACT

UNLABELLED: HPG Aligner applies suffix arrays for DNA read mapping. This implementation produces a highly sensitive and extremely fast mapping of DNA reads that scales up almost linearly with read length. The approach presented here is faster (over 20× for long reads) and more sensitive (over 98% in a wide range of read lengths) than the current state-of-the-art mappers. HPG Aligner is not only an optimal alternative for current sequencers but also the only solution available to cope with longer reads and growing throughputs produced by forthcoming sequencing technologies. AVAILABILITY AND IMPLEMENTATION: https://github.com/opencb/hpg-aligner.


Subject(s)
High-Throughput Nucleotide Sequencing/methods , Sequence Alignment/methods , Sequence Analysis, DNA/methods , Algorithms , Animals , Drosophila/genetics , Humans , Software
5.
Article in English | MEDLINE | ID: mdl-22450827

ABSTRACT

General Purpose Graphic Processing Units (GPGPUs) constitute an inexpensive resource for computing-intensive applications that could exploit an intrinsic fine-grain parallelism. This paper presents the design and implementation in GPGPUs of an exact alignment tool for nucleotide sequences based on the Burrows-Wheeler Transform. We compare this algorithm with state-of-the-art implementations of the same algorithm over standard CPUs, and considering the same conditions in terms of I/O. Excluding disk transfers, the implementation of the algorithm in GPUs shows a speedup larger than 12, when compared to CPU execution. This implementation exploits the parallelism by concurrently searching different sequences on the same reference search tree, maximizing memory locality and ensuring a symmetric access to the data. The paper describes the behavior of the algorithm in GPU, showing a good scalability in the performance, only limited by the size of the GPU inner memory.


Subject(s)
Algorithms , Computational Biology/methods , Data Compression/methods , Image Processing, Computer-Assisted/methods , Sequence Alignment/methods , Animals , Computer Graphics , Drosophila melanogaster/genetics , Genes, Insect , Models, Genetic , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...