Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134185, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38579582

ABSTRACT

Microplastics (MPs) are abundant in aquatic systems. The ecological risks of MPs may arise from their physical features, chemical properties, and/or their ability to concentrate and transport other contaminants, such as per- and polyfluoroalkyl substances (PFAS). PFAS have been extracted from MPs found in natural waters. Still, there needs to be a mechanistic investigation of the effect of PFAS chemistry and water physicochemical properties on how PFAS partition onto secondary MPs. Here, we studied the influence of pH, natural organic matter (NOM), ionic strength, and temperature on the adsorption of PFAS on MPs generated from PET water bottles. The adsorption of PFAS to the MPs was thermodynamically spontaneous at 25 °C, based on Gibb's free energy (ΔG = -16 to -23 kJ/mol), primarily due to increased entropy after adsorption. Adsorption reached equilibrium within 7-9 h. Hence, PFAS will partition to the surface of secondary PET MPs within hours in fresh and saline waters. Natural organic matter decreased the capacity of secondary PET MPs for PFAS through electrosteric repulsion, while higher ionic strength favored PFAS adsorption by decreasing electrostatic repulsion. Increased pH increased electrostatic repulsion, which negated PFAS adsorption. The study provides fundamental information for developing models to predict interactions between secondary MPs and PFAS.

2.
J Hazard Mater ; 457: 131718, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37269561

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are an important class of emerging contaminants in the environment. Most studies on the impact of PFAS mixtures considered phenotypic endpoints, which may not adequately reflect the sublethal effects on organisms. To fill this knowledge gap, we investigated the subchronic impact of environmentally relevant concentrations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS)-as individual compounds and a mixture (PFOS+PFOA)-on earthworm (Eisenia fetida), using phenotypic and molecular endpoints. PFAS decreased the survival (12.2-16.3%), biomass (9.0-9.8%), and reproduction (15.6-19.8%) of E. fetida after 28 d of exposure. The bioaccumulation of PFOS after 28 d increased (from 2790.7 ng/g-dw to 5224.9 ng/g-dw) while that of PFOA decreased (from 780.2 ng/g-dw to 280.5 ng/g-dw) when E. fetida was exposed to the mixture compared to the individual compounds. These bioaccumulation trends were partly attributed to changes in the soil distribution coefficient (Kd) of PFOS and PFOA when present in the mixture. Eighty percent of the (p and FDR < 0.05) altered metabolites after 28 d were similarly perturbed by both PFOA and PFOS+PFOA. The pathways dysregulated are related to the metabolism of amino acids, energy, and sulfur. We showed that PFOA dominates the molecular-level impact of the binary PFAS mixture.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Oligochaeta , Animals , Oligochaeta/metabolism , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/metabolism , Caprylates/toxicity , Caprylates/metabolism , Fluorocarbons/toxicity , Fluorocarbons/metabolism
3.
J Hazard Mater ; 437: 129266, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35749892

ABSTRACT

Aquaculture generates significant amount of processing wastes (more than 500 million pounds annually in the United States), the bulk of which ends up in the environment or is used in animal feed. Proper utilization of shrimp waste can increase their economic value and divert them from landfills. In this study, shrimp waste was converted to a porous carbon (named SPC) via direct pyrolysis and activation. SPC was characterized, and its performance for adsorbing ciprofloxacin from simulated water, natural waters, and wastewater was benchmarked against a commercial powdered activated carbon (PAC). The surface area of SPC (2262 m2/g) exceeded that of PAC (984 m2/g) due to abundance of micropores and mesopores. The adsorption of ciprofloxacin by SPC was thermodynamically spontaneous (ΔG = -19 kJ/mol) and fast (k1 = 1.05/min) at 25 °C. The capacity of SPC for ciprofloxacin (442 mg/g) was higher than that of PAC (181 mg/g). SPC also efficiently and simultaneously removed low concentrations (200 µg/L) of ciprofloxacin, long-chain per- and polyfluoroalkyl substances (PFAS), and Cu ions from water. An artificial neural network function was derived to predict ciprofloxacin adsorption and identify the relative contribution of each input parameter. This study demonstrates a sustainable and commercially viable pathway to reuse shrimp processing wastes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Ciprofloxacin , Machine Learning , Porosity , Water
4.
Environ Sci Nano ; 9(3): 867-910, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35401985

ABSTRACT

Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.

5.
J Hazard Mater ; 424(Pt B): 127284, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34655870

ABSTRACT

Pharmaceuticals and personal care products (PPCPs) are found in wastewater, and thus, the environment. In this study, current knowledge about the occurrence and fate of PPCPs in aquatic systems-including wastewater treatment plants (WWTPs) and natural waters around the world-is critically reviewed to inform the state of the science and highlight existing knowledge gaps. Excretion by humans is the primary route of PPCPs entry into municipal wastewater systems, but significant contributions also occur through emissions from hospitals, PPCPs manufacturers, and agriculture. Abundance of PPCPs in raw wastewater is influenced by several factors, including the population density and demography served by WWTPs, presence of hospitals and drugs manufacturers in the sewershed, disease burden of the population served, local regulations, and climatic conditions. Based on the data obtained from WWTPs, analgesics, antibiotics, and stimulants (e.g., caffeine) are the most abundant PPCPs in raw wastewater. In conventional WWTPs, most removal of PPCPs occurs during secondary treatment, and overall removal exceeds 90% for treatable PPCPs. Regardless, the total PPCP mass discharged with effluent by an average WWTP into receiving waters (7.35-20,160 g/day) is still considerable, because potential adverse effects of some PPCPs (such as ibuprofen) on aquatic organisms occur within measured concentrations found in surface waters.


Subject(s)
Cosmetics , Pharmaceutical Preparations , Water Pollutants, Chemical , Cosmetics/analysis , Environmental Monitoring , Humans , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...