Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(11): e2300886121, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38408213

ABSTRACT

Flight was a key innovation in the adaptive radiation of insects. However, it is a complex trait influenced by a large number of interacting biotic and abiotic factors, making it difficult to unravel the evolutionary drivers. We investigate flight patterns in neotropical heliconiine butterflies, well known for mimicry of their aposematic wing color patterns. We quantify the flight patterns (wing beat frequency and wing angles) of 351 individuals representing 29 heliconiine and 9 ithomiine species belonging to ten color pattern mimicry groupings. For wing beat frequency and up wing angles, we show that heliconiine species group by color pattern mimicry affiliation. Convergence of down wing angles to mimicry groupings is less pronounced, indicating that distinct components of flight are under different selection pressures and constraints. The flight characteristics of the Tiger mimicry group are particularly divergent due to convergence with distantly related ithomiine species. Predator-driven selection for mimicry also explained variation in flight among subspecies, indicating that this convergence can occur over relatively short evolutionary timescales. Our results suggest that the flight convergence is driven by aposematic signaling rather than shared habitat between comimics. We demonstrate that behavioral mimicry can occur between lineages that have separated over evolutionary timescales ranging from <0.5 to 70 My.


Subject(s)
Biological Mimicry , Butterflies , Animals , Biological Evolution , Wings, Animal
2.
Philos Trans R Soc Lond B Biol Sci ; 377(1855): 20200505, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35634924

ABSTRACT

Structural colours, produced by the reflection of light from ultrastructures, have evolved multiple times in butterflies. Unlike pigmentary colours and patterns, little is known about the genetic basis of these colours. Reflective structures on wing-scale ridges are responsible for iridescent structural colour in many butterflies, including the Müllerian mimics Heliconius erato and Heliconius melpomene. Here, we quantify aspects of scale ultrastructure variation and colour in crosses between iridescent and non-iridescent subspecies of both of these species and perform quantitative trait locus (QTL) mapping. We show that iridescent structural colour has a complex genetic basis in both species, with offspring from crosses having a wide variation in blue colour (both hue and brightness) and scale structure measurements. We detect two different genomic regions in each species that explain modest amounts of this variation, with a sex-linked QTL in H. erato but not H. melpomene. We also find differences between species in the relationships between structure and colour, overall suggesting that these species have followed different evolutionary trajectories in their evolution of structural colour. We then identify genes within the QTL intervals that are differentially expressed between subspecies and/or wing regions, revealing likely candidates for genes controlling structural colour formation. This article is part of the theme issue 'Genetic basis of adaptation and speciation: from loci to causative mutations'.


Subject(s)
Butterflies , Animals , Butterflies/genetics , Chromosome Mapping , Color , Pigmentation/genetics , Wings, Animal
3.
Mol Ecol ; 30(23): 6387-6402, 2021 12.
Article in English | MEDLINE | ID: mdl-34233044

ABSTRACT

Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.


Subject(s)
Altitude , Butterflies , Wings, Animal , Animals , Butterflies/anatomy & histology , Butterflies/genetics , Genomics , Phenotype , Pigmentation , Wings, Animal/anatomy & histology
4.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Article in English | MEDLINE | ID: mdl-34155138

ABSTRACT

Genetic variation segregates as linked sets of variants or haplotypes. Haplotypes and linkage are central to genetics and underpin virtually all genetic and selection analysis. Yet, genomic data often omit haplotype information due to constraints in sequencing technologies. Here, we present "haplotagging," a simple, low-cost linked-read sequencing technique that allows sequencing of hundreds of individuals while retaining linkage information. We apply haplotagging to construct megabase-size haplotypes for over 600 individual butterflies (Heliconius erato and H. melpomene), which form overlapping hybrid zones across an elevational gradient in Ecuador. Haplotagging identifies loci controlling distinctive high- and lowland wing color patterns. Divergent haplotypes are found at the same major loci in both species, while chromosome rearrangements show no parallelism. Remarkably, in both species, the geographic clines for the major wing-pattern loci are displaced by 18 km, leading to the rise of a novel hybrid morph in the center of the hybrid zone. We propose that shared warning signaling (Müllerian mimicry) may couple the cline shifts seen in both species and facilitate the parallel coemergence of a novel hybrid morph in both comimetic species. Our results show the power of efficient haplotyping methods when combined with large-scale sequencing data from natural populations.


Subject(s)
Butterflies/genetics , Haplotypes/genetics , Hybridization, Genetic , Animals , Biological Mimicry , Chromosome Inversion/genetics , Ecuador , Gene Rearrangement/genetics , Genetic Variation , Genome , Quantitative Trait, Heritable , Selection, Genetic , Species Specificity
5.
J Evol Biol ; 33(11): 1516-1529, 2020 11.
Article in English | MEDLINE | ID: mdl-32939870

ABSTRACT

Mimetic systems allow us to address the question of whether the same genes control similar phenotypes in different species. Although widespread parallels have been found for major effect loci, much less is known about genes that control quantitative trait variation. In this study, we identify and compare the loci that control subtle changes in the size and shape of forewing pattern elements in two Heliconius butterfly co-mimics. We use quantitative trait locus (QTL) analysis with a multivariate phenotyping approach to map the variation in red pattern elements across the whole forewing surface of Heliconius erato and Heliconius melpomene. These results are compared with a QTL analysis of univariate trait changes, and show that our resolution for identifying small effect loci is somewhat improved with the multivariate approach, but also that different loci are detected with these different approaches. QTL likely corresponding to the known patterning gene optix were found in both species but otherwise, a remarkably low level of genetic parallelism was found. This lack of similarity indicates that the genetic basis of convergent traits may not be as predictable as assumed from studies that focus solely on Mendelian traits.


Subject(s)
Biological Evolution , Biological Mimicry , Butterflies/genetics , Pigmentation/genetics , Quantitative Trait Loci , Animals , Chromosomes, Insect , Female , Male
6.
Interface Focus ; 9(1): 20180047, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30603067

ABSTRACT

Bright, highly reflective iridescent colours can be seen across nature and are produced by the scattering of light from nanostructures. Heliconius butterflies have been widely studied for their diversity and mimicry of wing colour patterns. Despite iridescence evolving multiple times in this genus, little is known about the genetic basis of the colour and the development of the structures which produce it. Heliconius erato can be found across Central and South America, but only races found in western Ecuador and Colombia have developed blue iridescent colour. Here, we use crosses between iridescent and non-iridescent races of H. erato to study phenotypic variation in the resulting F2 generation. Using measurements of blue colour from photographs, we find that iridescent structural colour is a quantitative trait controlled by multiple genes, with strong evidence for loci on the Z sex chromosome. Iridescence is not linked to the Mendelian colour pattern locus that also segregates in these crosses (controlled by the gene cortex). Small-angle X-ray scattering data show that spacing between longitudinal ridges on the scales, which affects the intensity of the blue reflectance, also varies quantitatively in F2 crosses.

7.
Proc Biol Sci ; 285(1876)2018 04 11.
Article in English | MEDLINE | ID: mdl-29618547

ABSTRACT

Despite more than a century of biological research on the evolution and maintenance of mimetic signals, the relative frequencies of models and mimics necessary to establish and maintain Batesian mimicry in natural populations remain understudied. Here we investigate the frequency-dependent dynamics of imperfect Batesian mimicry, using predation experiments involving artificial butterfly models. We use two geographically distinct populations of Adelpha butterflies that vary in their relative frequencies of a putatively defended model (Adelpha iphiclus) and Batesian mimic (Adelpha serpa). We found that in Costa Rica, where both species share similar abundances, Batesian mimicry breaks down, and predators more readily attack artificial butterfly models of the presumed mimic, A. serpa By contrast, in Ecuador, where A. iphiclus (model) is significantly more abundant than A. serpa (mimic), both species are equally protected from predation. Our results provide compelling experimental evidence that imperfect Batesian mimicry is frequency-dependent on the relative abundance of models and mimics in natural populations, and contribute to the growing body of evidence that complex dynamics, such as seasonality or the availability of alternative prey, influence the evolution of mimetic traits.


Subject(s)
Biological Mimicry , Butterflies , Predatory Behavior , Animals , Birds , Costa Rica , Ecuador , Models, Biological , Wings, Animal/anatomy & histology
8.
Proc Biol Sci ; 279(1727): 316-25, 2012 Jan 22.
Article in English | MEDLINE | ID: mdl-21676976

ABSTRACT

The origin and evolution of supergenes have long fascinated evolutionary biologists. In the polymorphic butterfly Heliconius numata, a supergene controls the switch between multiple different forms, and results in near-perfect mimicry of model species. Here, we use a morphometric analysis to quantify the variation in wing pattern observed in two broods of H. numata with different alleles at the supergene locus, 'P'. Further, we genotype the broods to associate the variation we capture with genetic differences. This allows us to begin mapping the quantitative trait loci that have minor effects on wing pattern. In addition to finding loci on novel chromosomes, our data, to our knowledge, suggest for the first time that ancestral colour-pattern loci, known to have major effects in closely related species, may contribute to the wing patterns displayed by H. numata, despite the large transfer of effects to the supergene.


Subject(s)
Butterflies/genetics , Evolution, Molecular , Genes, Insect , Animals , Butterflies/anatomy & histology , Genetic Variation , Genotype , Quantitative Trait Loci , Wings, Animal/anatomy & histology
9.
Am Nat ; 170(5): 783-92, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17926299

ABSTRACT

To the extent that geography correlates with particular environmental parameters, the geographical distribution of phylogenetically related social and nonsocial organisms should shed light on the conditions that lead to sociality versus nonsociality. Social spiders are notorious for being concentrated in tropical regions of the world, occupying a set of habitats more restricted than those available to the phylogenetic lineages in which they occur. Here we document a parallel pattern involving elevation in the spider genus Anelosimus in America and describe the biology of a newly discovered social species found at what appears to be the altitudinal edge of sociality in the genus. We show that this is a cooperative permanent-social species with highly female-biased sex ratios but colonies that are one to two orders of magnitude smaller than those of a low-elevation congener of similar body size. We suggest that the absence of subsocial Anelosimus species in the lowland rain forest may be due to an increased probability of maternal death in this habitat due to greater predation and/or precipitation, while absence of a sufficient supply of large insects at high elevations or latitudes may restrict social species to low- to midelevation tropical moist forests. We refer to these as the "maternal survival" and "prey size" hypotheses, respectively, and suggest that both in combination may explain the geographical distribution of sociality in the genus.


Subject(s)
Social Behavior , Spiders/physiology , Animals , Cooperative Behavior , Ecuador , Feeding Behavior , Female , Geography , Male , Population Dynamics , Sex Ratio , Spiders/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...