Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 17(2): e202301033, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37724580

ABSTRACT

Recently, interest in converting bio-derived fatty acid methyl esters (FAMEs) into added-value products has significantly increased. The selectivity of ketonization reaction in the conversion of the FAMEs has significantly hampered the efficiency of this process. Herein, this work reports the preparation of catalysts with different levels of oxygen vacancies while the crystal phase remained unchanged. The catalyst with the highest level of oxygen vacancy exhibited the maximum selectivity. The density functional theory (DFT) simulation showed an increase in interatomic distances leading to the formation of frustrated Lewis pairs (FLPs) upon the creation of oxygen vacancies. The surface measurements, type and density of acid sites of the catalysts, showed that the Lewis acid sites enhanced the selectivity for ketone production; while Bronsted acid sites increased the formation of by-products. Moreover, the ketone formation rate was directly proportional to acid density. The findings of this research provide a different approach for catalyst design, based on defects engineering and their effect on the surface activity, which could be used for enhancing the catalytic performance of novel metal oxides.

2.
J Environ Manage ; 181: 269-278, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27372249

ABSTRACT

In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons.


Subject(s)
Charcoal/chemistry , Coloring Agents/isolation & purification , Waste Disposal, Fluid/methods , Adsorption , Carbon/chemistry , Coloring Agents/chemistry , Methylene Blue/chemistry , Methylene Blue/isolation & purification , Nitrogen/chemistry , Phosphoric Acids/chemistry , Porosity , Spectroscopy, Fourier Transform Infrared , Textile Industry , Vegetables/chemistry , Waste Disposal, Fluid/instrumentation , Waste Products , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
3.
J Mol Model ; 19(2): 839-46, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23065142

ABSTRACT

The influence of vacancies and substitutional defects on the structural and electronic properties of graphene, graphene oxide, hexagonal boron nitride, and boron nitride oxide two-dimensional molecular models was studied using density functional theory (DFT) at the level of local density approximation (LDA). Bond length, dipole moment, HOMO-LUMO energy gap, and binding energy were calculated for each system with and without point defects. The results obtained indicate that the formation of a point defect does not necessary lead to structural instability; nevertheless, surface distortions and reconstruction processes were observed, mainly when a vacancy-type defect is generated. For graphene, it was found that incorporation of a point defect results in a semiconductor-semimetal transition and also increases notably its polar character. As with graphene, the formation of a point defect in a hexagonal boron nitride sheet reduces its energy gap, although its influence on the resulting dipole moment is not as dramatic as in graphene. The influence of point defects on the structural and electronic properties of graphene oxide and boron nitride oxide sheets were found to be mediated by the chemisorbed species.

4.
J Phys Chem A ; 110(34): 10274-8, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16928118

ABSTRACT

We present a detailed structural analysis for small Tin (n = 2-15) clusters based on ab initio quantum mechanical calculations of their binding energies, frontier orbital gaps, and second energy derivatives. Local density approximation calculations revealed that while the smaller clusters (n < or = 8) prefer hexagonal atomic arrays with bulklike crystal symmetry, the bigger clusters prefer pentagonal atomic arrays. From the stability criteria of the magic number clusters we could identify three magic number clusters Ti7, Ti13, and Ti15. While the most stable configuration of Ti7 is a decahedral bipyramid induced by tetrahedral atomic arrays, the most stable configuration of Ti13 is an icosahedron. The other stable cluster Ti15 takes a closed-shell icosahedron-like configuration with both pentagonal and hexagonal symmetries. The stability of the Tin clusters strongly depends on their geometries and charge states. The HOMO-LUMO gap of the Tin clusters approaches its bulk value for n > 8. While there is not much difference between the HOMO and LUMO isosurface charge distributions for the Ti7 and Ti13 clusters in their most stable configurations, they are very different in the case of Ti15. Such a distinct charge distribution in Ti15 indicates its singular chemical selectivity over the other two magic number clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...