Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 335: 139055, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37268227

ABSTRACT

Plastic particles (PLs) are ubiquitous in aquatic ecosystems, and aquaculture production is susceptible to contamination from external or endogenous sources. This study investigated PL presence in water, fish feed and body sites of 55 European seabass produced in a recirculating aquaculture system (RAS). Fish morphometric parameters and health status biomarkers were determined. A total of 372 PLs were recovered from water (37.2 PL/L), 118 PLs from feed (3.9 PL/g), and 422 from seabass (0.7 PL/g fish; all body sites analysed). All 55 specimens had PLs in at least two of the four body sites analysed. Concentrations were higher in the gastrointestinal tract (GIT; 1.0 PL/g) and gills (0.8 PL/g) than in the liver (0.8 PL/g) and muscle (0.4 PL/g). PL concentration in GIT was significantly higher than in muscle. Black, blue, and transparent fibres made of man-made cellulose/rayon and polyethylene terephthalate were the most common PLs in water and seabass, while black fragments of phenoxy resin were the most common in feed. The levels of polymers linked to RAS components (polyethylene, polypropylene, and polyvinyl chloride) were low, suggesting a limited contribution to the overall PL levels found in water and/or fish. The mean PL size recovered from GIT (930 µm) and gills (1047 µm) was significantly larger than those found in the liver (647 µm) and dorsal muscle (425 µm). Considering all body sites, PLs bioconcentrated in seabass (BCFFish >1), but their bioaccumulation did not occur (BAFFish <1). No significant differences were observed in oxidative stress biomarkers between fish with low (<7) and high (≥7) PL numbers. These findings suggest that fish produced in RAS are mainly exposed to MPs through water and feed. Further monitoring under commercial conditions and risk assessment are warranted to identify potential threats to fish and human health and define mitigating measures.


Subject(s)
Bass , Water Pollutants, Chemical , Humans , Animals , Microplastics , Plastics/analysis , Water/analysis , Ecosystem , Aquaculture , Biomarkers , Water Pollutants, Chemical/analysis , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL
...