Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Res Sq ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39041026

ABSTRACT

Shigellosis is a gastrointestinal infection caused by species of Shigella . A large outbreak of Shigella flexneri serotype 2a occurred in Albuquerque, New Mexico (NM) between May 2021 and November 2023 that involved humans and nonhuman primates (NHP) from a local zoo. We analyzed the genomes of 202 New Mexico isolates as well as 15 closely related isolates from other states, and four from NHP. The outbreak was initially detected within men who have sex with men (MSM) but then predominantly affected people experiencing homelessness (PEH). Nearly 70% of cases were hospitalized and there was one human death. The outbreak extended into Albuquerque's BioPark Zoo, causing high morbidity and six deaths in NHPs. The NHP isolates were identical to those in the human outbreak. All isolates were multidrug-resistant, including towards fluoroquinolones, a first line treatment option which led to treatment failures in human and NHP populations. We demonstrate the transmission of this S. flexneri strain between humans and NHPs, causing fatalities in both populations. This study demonstrates the threat of antimicrobial resistant organisms to vulnerable human and primate populations and emphasizes the value of vigilant genomic surveillance within a One Health framework.

2.
PLoS Negl Trop Dis ; 18(1): e0011672, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38215158

ABSTRACT

BACKGROUND: Hantaviruses are negative-stranded RNA viruses that can sometimes cause severe disease in humans; however, they are maintained in mammalian host populations without causing harm. In Panama, sigmodontine rodents serve as hosts to transmissible hantaviruses. Due to natural and anthropogenic forces, these rodent populations are having increased contact with humans. METHODS: We extracted RNA and performed Illumina deep metatranscriptomic sequencing on Orthohantavirus seropositive museum tissues from rodents. We acquired sequence reads mapping to Choclo virus (CHOV, Orthohantavirus chocloense) from heart and kidney tissue of a two-decade old frozen museum sample from a Costa Rican pygmy rice rat (Oligoryzomys costaricensis) collected in Panama. Reads mapped to the CHOV reference were assembled and then validated by visualization of the mapped reads against the assembly. RESULTS: We recovered a 91% complete consensus sequence from a reference-guided assembly to CHOV with an average of 16X coverage. The S and M segments used in our phylogenetic analyses were nearly complete (98% and 99%, respectively). There were 1,199 ambiguous base calls of which 93% were present in the L segment. Our assembled genome varied 1.1% from the CHOV reference sequence resulting in eight nonsynonymous mutations. Further analysis of all publicly available partial S segment sequences support a clear relationship between CHOV clinical cases and O. costaricensis acquired strains. CONCLUSIONS: Viruses occurring at extremely low abundances can be recovered from deep metatranscriptomics of archival tissues housed in research natural history museum biorepositories. Our efforts resulted in the second CHOV genome publicly available. This genomic data is important for future surveillance and diagnostic tools as well as understanding the evolution and pathogenicity of CHOV.


Subject(s)
Orthohantavirus , Sigmodontinae , Animals , Rats , Humans , Phylogeny , Rodentia , Biological Specimen Banks
3.
Fungal Genet Biol ; 169: 103838, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37716699

ABSTRACT

Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution.


Subject(s)
Burkholderiaceae , Host Adaptation , Phylogeny , Burkholderiaceae/genetics , Fungi/genetics , Bacteria , Symbiosis/genetics
4.
FEMS Microbes ; 3: xtac012, 2022.
Article in English | MEDLINE | ID: mdl-35573391

ABSTRACT

Polyketide synthases (PKSs) are multidomain enzymes in microorganisms that synthesize complex, bioactive molecules. PKS II systems are iterative, containing only a single representative of each domain: ketosynthase alpha (KS[Formula: see text]), ketosynthase beta and the acyl carrier protein. Any gene encoding for one of these domains is representative of an entire PKS II biosynthetic gene cluster (BGC). Bat skin surfaces represent an extreme environment prolific in Actinobacteria that may constitute a source for bioactive molecule discovery. KS[Formula: see text] sequences were obtained from culturable bacteria from bats in the southwestern United States. From 467 bat bacterial isolates, we detected 215 (46%) had KS[Formula: see text] sequences. Sequencing yielded 210 operational taxonomic units, and phylogenetic placement found 45 (21%) shared <85% homology to characterized metabolites. Additionally, 16 Actinobacteria genomes from the bat microbiome were analyzed for biosynthetic capacity. A range of 69-93% of the BGCs were novel suggesting the bat microbiome may contain valuable uncharacterized natural products. Documenting and characterizing these are important in understanding the susceptibility of bats to emerging infectious diseases, such as white-nose syndrome. Also noteworthy was the relationship between KS [Formula: see text] homology and total BGC novelty within each fully sequenced strain. We propose amplification and detection of KS[Formula: see text] could predict a strain's global biosynthetic capacity.

5.
Front Fungal Biol ; 3: 996574, 2022.
Article in English | MEDLINE | ID: mdl-37746221

ABSTRACT

Human lung mycobiome studies typically sample bronchoalveolar lavage or sputum, potentially overlooking fungi embedded in tissues. Employing ultra-frozen lung tissues from biorepositories, we obtained fungal ribosomal RNA ITS2 sequences from 199 small mammals across 39 species. We documented diverse fungi, including common environmental fungi such as Penicillium and Aspergillus, associates of the human mycobiome such as Malassezia and Candida, and others specifically adapted for lungs (Coccidioides, Blastomyces, and Pneumocystis). Pneumocystis sequences were detected in 83% of the samples and generally exhibited phylogenetic congruence with hosts. Among sequences from diverse opportunistic pathogens in the Onygenales, species of Coccidioides occurred in 12% of samples and species of Blastomyces in 85% of samples. Coccidioides sequences occurred in 14 mammalian species. The presence of neither Coccidioides nor Aspergillus fumigatus correlated with substantial shifts in the overall mycobiome, although there was some indication that fungal communities might be influenced by high levels of A. fumigatus. Although members of the Onygenales were common in lung samples (92%), they are not common in environmental surveys. Our results indicate that Pneumocystis and certain Onygenales are common commensal members of the lung mycobiome. These results provide new insights into the biology of lung-inhabiting fungi and flag small mammals as potential reservoirs for emerging fungal pathogens.

SELECTION OF CITATIONS
SEARCH DETAIL
...