ABSTRACT
Ticks are hematophagous ectoparasites with importance to animal and human health. In recent years, the study of ticks has had significant development, including immune response, vector-host interactions, physiological and multi-omics approaches. However, one of the main impediments is obtaining a significant amount of high-quality hemolymph. For this reason, we developed a protocol that allows obtaining up to 100 µl of hemolymph free of host blood per engorged tick. The technique consists of continuous hipocuticular punctures of the tick dorsum and an anticoagulant buffer that impedes hemolymph coagulation, allowing constant extravasation and ensuring high yields. Additionally, the hemocytes recovered with this protocol are intact and can be used for further analysis. The high-quality hemolymph obtained using this protocol and its applications will help to better understand the processes involving the hemolymph and its components. Although there are other hemolymph extraction protocols, the method developed here is very well suited for Rhipicephalus microplus, and in our experience, results in better yields and high-quality samples.
ABSTRACT
Ticks are hematophagous ectoparasites that infest a diverse number of vertebrate hosts. The tick immunobiology plays a significant role in establishing and transmitting many pathogens to their hosts. To control tick infestations, the acaricide application is a commonly used method with severe environmental consequences and the selection of tick-resistant populations. With these drawbacks, new tick control methods need to be developed, and the immune system of ticks contains a plethora of potential candidates for vaccine design. Additionally, tick immunity is based on an orchestrated action of humoral and cellular immune responses. Therefore, the actors of these responses are the object of our study in this review since they are new targets in anti-tick vaccine design. We present their role in the immune response that positions them as feasible targets that can be blocked, inhibited, interfered with, and overexpressed, and then elucidate a new method to control tick infestations through the development of vaccines. We also propose Extracellular Traps Formation (ETosis) in ticks as a process to eliminate their natural enemies and those pathogens they transmit (vectorial capacity), which results attractive since they are a source of acting molecules with potential use as vaccines.