Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Jpn J Infect Dis ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825455

ABSTRACT

Biofilm-producing methicillin-resistant Staphylococcus aureus (MRSA) and coagulase-negative Staphylococci (MR-CoNS) are a clinical challenge for the treatment of healthcare-associated infections. As alternative antimicrobial options are needed, we aimed to determine the effect of curcumin-chitosan magnetic nanoparticles on the biofilm of staphylococcal clinical isolates. MRSA and CoNS clinical isolates were identified by MALDI-TOF mass spectrometry. Antimicrobial susceptibility testing was performed by broth microdilution. Nanoparticles were synthesized by co-precipitation of magnetic nanoparticles (MNP) and encapsulation by ionotropic gelation of curcumin (Cur) and chitosan (Chi). Biofilm inhibition and eradication by nanoparticles with and without the addition of oxacillin was assessed on staphylococcal strains. Cur-Chi-MNP showed antimicrobial activity on planktonic cells of MRSA and MR-CoNS strains and inhibited biofilm of MRSA. The addition of OXA to Cur-Chi-MNP increased biofilm inhibition and eradication activity against all Staphylococci strains (p=0.0007); higher biofilm activity was observed in early biofilm stages. Cur-Chi-MNP showed antimicrobial and biofilm inhibition activity against S. aureus. The addition of OXA increased biofilm inhibition and eradication activity against all Staphylococci strains. A combination treatment of Cur-Chi-MNP and OXA could be potentially used to treat staphylococcal biofilm-associated infections in its early stages before the establishment of biofilm bacterial cells.

2.
Expert Rev Anti Infect Ther ; 21(2): 213-223, 2023 02.
Article in English | MEDLINE | ID: mdl-36625029

ABSTRACT

BACKGROUND: Non-fermenting Gram-negative Achromobacter xylosoxidans, Burkholderia cepacia complex, and Stenotrophomonas maltophilia species cause healthcare-associated infections, often showing resistance to first-line drugs such as trimethoprim-sulfamethoxazole (TMP-SXT). The aim of this study was to determine the effect of curcumin-chitosan nanocomplexes on biofilm-producing clinical isolates of non-fermenting Gram-negative bacilli. METHODS: A. xylosoxidans, B. cepacia complex, and S. maltophilia clinical isolates were identified by MALDI-TOF mass spectrometry. Antimicrobial susceptibility was determined by broth microdilution. Curcumin (Cur), chitosan (Chi), and sodium tripolyphosphate (TPP) were encapsulated by ionotropic gelation in magnetic nanoparticles (MNP) and were assessed by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR). Biofilm inhibition and eradication by Cur-Chi-TPP-MNP with TMP-SXT was assessed. RESULTS: Cur-Chi-TPP-MNP in combination with TMP-SXT showed biofilm inhibition activity in A. xylosoxidans (37.5 µg/mL), B. cepacia (18.75 µg/mL), and S. maltophilia (4.69-18.75 µg/mL) and low biofilm eradication activity in all three strains (150 - 300 µg/mL). CONCLUSIONS: Cur-Chi-TPP-MNP in combination with TMP-SXT was able to inhibit biofilm and in lower effect to eradicate established biofilms of clinical isolates of A. xylosoxidans, B. cepacia complex, and S. maltophilia species. Our results highlight the need to assess these potential treatment options to be used clinically in biofilm-associated infections.


Subject(s)
Achromobacter , Burkholderia , Chitosan , Curcumin , Gram-Negative Bacterial Infections , Stenotrophomonas maltophilia , Humans , Trimethoprim, Sulfamethoxazole Drug Combination/pharmacology , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Curcumin/pharmacology , Stenotrophomonas , Chitosan/pharmacology , Chitosan/therapeutic use , Biofilms , Microbial Sensitivity Tests , Gram-Negative Bacterial Infections/drug therapy
3.
Expert Rev Anti Infect Ther ; 17(11): 877-893, 2019 11.
Article in English | MEDLINE | ID: mdl-31658838

ABSTRACT

Introduction: Infections caused by the opportunistic Stenotrophomonas maltophilia pathogen in immunocompromised patients are complicated to treat due to antibiotic resistance and the ability of the bacteria to produce biofilm.Areas covered: A MEDLINE/PubMed search was performed of available literature to describe the role of biofilm produced by S. maltophilia in the diseases it causes, including biofilm-influencing factors, the biofilm forming process and composition. The antimicrobial resistance due to S. maltophilia biofilm production and current antibiofilm strategies is also included.Expert opinion: Through the production of biofilm, S. maltophilia strains can easily adhere to the surfaces in hospital settings and aid in its transmission. The biofilm can also cause antibiotic tolerance rendering some of the therapeutic options ineffective, causing setbacks in the selection of an appropriate treatment. Conventional susceptibility tests do not yet offer therapeutic guidelines to treat biofilm-associated infections. Current S. maltophilia biofilm control strategies include natural and synthetic compounds, chelating agents, and commonly prescribed antibiotics. As biofilm age and matrix composition affect the level of antibiotic tolerance, their characterization should be included in biofilm susceptibility testing, in addition to molecular and proteomic analyzes. As for now, several commonly recommended antibiotics can be used to treat biofilm-related S. maltophilia infections.


Subject(s)
Biofilms/growth & development , Gram-Negative Bacterial Infections/epidemiology , Stenotrophomonas maltophilia/isolation & purification , Animals , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/microbiology , Humans , Immunocompromised Host , Microbial Sensitivity Tests , Proteomics , Stenotrophomonas maltophilia/drug effects , Stenotrophomonas maltophilia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...