Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 55(4): 179-193, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36912534

ABSTRACT

The endothelium contains morphologically similar cells throughout the vasculature, but individual cells along the length of a single vascular tree or in different regional circulations function dissimilarly. When observations made in large arteries are extrapolated to explain the function of endothelial cells (ECs) in the resistance vasculature, only a fraction of these observations are consistent between artery sizes. To what extent endothelial (EC) and vascular smooth muscle cells (VSMCs) from different arteriolar segments of the same tissue differ phenotypically at the single-cell level remains unknown. Therefore, single-cell RNA-seq (10x Genomics) was performed using a 10X Genomics Chromium system. Cells were enzymatically digested from large (>300 µm) and small (<150 µm) mesenteric arteries from nine adult male Sprague-Dawley rats, pooled to create six samples (3 rats/sample, 3 samples/group). After normalized integration, the dataset was scaled before unsupervised cell clustering and cluster visualization using UMAP plots. Differential gene expression analysis allowed us to infer the biological identity of different clusters. Our analysis revealed 630 and 641 differentially expressed genes (DEGs) between conduit and resistance arteries for ECs and VSMCs, respectively. Gene ontology analysis (GO-Biological Processes, GOBP) of scRNA-seq data discovered 562 and 270 pathways for ECs and VSMCs, respectively, that differed between large and small arteries. We identified eight and seven unique ECs and VSMCs subpopulations, respectively, with DEGs and pathways identified for each cluster. These results and this dataset allow the discovery and support of novel hypotheses needed to identify mechanisms that determine the phenotypic heterogeneity between conduit and resistance arteries.


Subject(s)
Endothelial Cells , Transcriptome , Rats , Animals , Transcriptome/genetics , Endothelial Cells/metabolism , Rats, Sprague-Dawley , Endothelium, Vascular/metabolism , Muscle, Smooth, Vascular/metabolism , Mesenteric Arteries , Gene Expression Profiling
2.
Microcirculation ; 29(4-5): e12774, 2022 07.
Article in English | MEDLINE | ID: mdl-35689491

ABSTRACT

OBJECTIVE: Our previous work demonstrated that endothelial cell (EC) membrane cholesterol is reduced following 48 h of chronic hypoxia (CH). CH couples endothelial transient receptor potential subfamily V member 4 (TRPV4) channels to muscarinic receptor signaling through an endothelium-dependent hyperpolarization (EDH) pathway does not present in control animals. TRVPV4 channel activity has been shown to be regulated by membrane cholesterol. Hence, we hypothesize that acute manipulation of endothelial cell membrane cholesterol inversely determines the contribution of TRPV4 channels to endothelium-dependent vasodilation. METHODS: Male Sprague-Dawley rats were exposed to ambient atmospheric (atm.) pressure or 48-h of hypoxia (0.5 atm). Vasodilation to acetylcholine (ACh) was determined using pressure myography in gracilis arteries. EC membrane cholesterol was depleted using methyl-ß-cyclodextrin (MßCD) and supplemented with MßCD-cholesterol. RESULTS: Inhibiting TRPV4 did not affect ACh-induced vasodilation in normoxic controls. However, TRPV4 inhibition reduced resting diameter in control arteries suggesting basal activity. TRPV4 contributes to ACh-induced vasodilation in these arteries when EC membrane cholesterol is depleted. Inhibiting TRPV4 attenuated ACh-induced vasodilation in arteries from CH animals that exhibit lower EC membrane cholesterol than normoxic controls. EC cholesterol repletion in arteries from CH animals abolished the contribution of TRPV4 to ACh-induced vasodilation. CONCLUSION: Endothelial cell membrane cholesterol impedes the contribution of TRPV4 channels in EDH-mediated dilation. These results provide additional evidence for the importance of plasma membrane cholesterol content in regulating intracellular signaling and vascular function.


Subject(s)
TRPV Cation Channels , Vasodilation , Acetylcholine/pharmacology , Animals , Arteries/metabolism , Cell Membrane/metabolism , Cholesterol , Endothelial Cells/metabolism , Endothelium, Vascular , Hypoxia , Male , Mesenteric Arteries/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...