Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37453389

ABSTRACT

Tuberculosis (TB) is a high-burden infectious disease with high prevalence and mortality rates. The first-line anti-TB drugs include isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), and ethambutol (EMB). At present, the standard method of blood sampling for therapeutic drug monitoring (TDM) analysis is venipuncture. Dried blood spots (DBS) are a minimally invasive method for collecting small quantities of whole blood from fingertips. The aim of the current study was to develop an ultrahigh-performance liquid chromatography technique coupled to tandem mass spectrometry (UPLC-MS/MS) for simultaneous quantification of the first-line anti-TB drugs in human plasma and DBS as a sampling alternative. The separation and detection conditions were optimized to quantify INH, RMP, PZA, and EMB in both matrices in an ACQUITY UPLC H Class system coupled to a XEVO TQD detector. Chromatographic separation was performed through an Acquity HSS T3 column (2.1 × 100 mm, 1.8 µm) with 0.1% formic acid in water and acetonitrile as the mobile phase. The total run time was 7 min for both methods, with retention time in plasma of 0.85, 1.22, 3.16, and 4.04 min and 0.74, 0.87, 0.97, and 4.16 min for EMB, INH, PZA, and RMP in DBS, respectively. The bioanalytical methods developed were proved selective, linear, precise, and accurate (inter- and intra-assay); the matrix effect was demonstrated to be within the established limits. Short- and long-term stability, freeze-thaw cycles for plasma, and short-term stability for DBS were established. A total of 15 patients with 46 ± 17 (mean ± SD) years old were included, and anti-TB drug concentrations were quantified on plasma and DBS as proof of concept. Based on RMP and INH plasma concentrations (Cp), and Bayesian estimation of individual pharmacokinetic parameters, a dose adjustment was necessary for 93% of patients. The slopes of the correlation lines between plasma and DBS concentrations of RMP, EMB, INH, and PZA were 0.5321, 0.8125, 0.5680, and 0.6791, respectively. Finally, significant correlations (p < 0.05) were observed between DBS and plasma concentrations for RMP (r2 = 0.6961), EMB (r2 = 0.4369), INH (r2 = 0.8675) and PZA (r2 = 0.7363). A simple, fast, and reliable UPLC-MS/MS method was developed to quantify first-line anti-TB drugs in plasma and DBS, which provides an easy sampling and storage to be applied as a new strategy for TDM in patients with TB.


Subject(s)
Antitubercular Agents , Tuberculosis , Humans , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Bayes Theorem , Tuberculosis/drug therapy , Isoniazid , Rifampin , Ethambutol , Reference Standards
2.
Environ Resour Econ (Dordr) ; : 1-6, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32836838

ABSTRACT

COVID-19 is currently having major short run effects with possible serious long run implications for the environment and the management of natural resources in Latin America. We discuss the possible effects of the pandemic on air pollution, deforestation and other relevant environmental dimensions across the region. With contributions from environmental economists from eight countries, we give an overview of the initial and expected environmental effects of this health crisis. We discuss potential effects on environmental regulations, possible policy interventions, and an agenda for future research for those interested in the design and evaluation of environmental policies relevant for the Latin American context.

3.
J Nutrigenet Nutrigenomics ; 10(5-6): 181-193, 2017.
Article in English | MEDLINE | ID: mdl-29462810

ABSTRACT

BACKGROUND/AIM: Amaranth is a source of several bioactive compounds, among which peptides with inhibitory activity upon dipeptidyl peptidase IV (DPP-IV) have been reported. However, there is no information about the action of amaranth DPP-IV-inhibitory peptides using in vivo models. The aim of this work was to evaluate the effect of amaranth consumption on plasma and kidney DPP-IV activity as well the changes in plasma proteome profile of streptozotocin (STZ)-induced hyperglycemic rats. METHODS: Rats were fed for 12 weeks with a diet containing 20% popped amaranth grain. Kidneys and blood samples were collected for lipid profile, DPP-IV activity and expression, and proteomic analysis. RESULTS: Total cholesterol and DPP-IV activity in plasma was increased in hyperglycemic rats, but this effect was reverted by amaranth consumption. Triacylglycerols were increased in the hyperglycemic group fed amaranth, and the highest levels of high-density lipoproteins were also observed in this group. These data correlated with the accumulation of apolipoprotein A-II in plasma. Accumulation of the antioxidant protein paraoxonase/arylesterase 1 in STZ-induced hyperglycemic rats was observed when amaranth was supplied in the diet. CONCLUSION: This study provides new insights into the molecular mechanisms by which amaranth exerts its beneficial health action in a hyperglycemic state.


Subject(s)
Amaranthus , Aryldialkylphosphatase/blood , Carboxylic Ester Hydrolases/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/diet therapy , Dipeptidyl Peptidase 4/blood , Animals , Antioxidants/metabolism , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/enzymology , Dipeptidyl Peptidase 4/metabolism , Functional Food , Kidney/enzymology , Lipids/blood , Male , Nutrigenomics , Proteome/metabolism , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL