Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Qual Saf ; 6(4): e427, 2021.
Article in English | MEDLINE | ID: mdl-34345746

ABSTRACT

INTRODUCTION: Since the onset of COVID-19, intubations have become very high risk for clinical teams. Barrier devices during endotracheal intubation protect clinicians from the aerosols generated. Simulation-based user-centered design (UCD) was an iterative design process used to develop a pediatric intubation aerosol containment system (IACS). Simulation was anchored in human factor engineering and UCD to better understand clinicians' complex interaction with the IACS device, elicit user wants and needs, identify design inefficiencies, and unveil safety concerns. METHODS: This study was a prospective observational study of a simulation-based investigation used to design a pediatric IACS rapidly. Debriefing and Failure Mode and Effect Analysis identified latent conditions related to 5 device prototypes. Design iterations made were based on feedback provided to the engineering team after each simulation. RESULTS: Simulation identified 32 latent conditions, resulting in 5 iterations of the IACS prototype. The prototypes included an (1) intubation box; (2) IACS shield; (3) IACS frame with PVC pipes; (4) IACS plexiglass frame, and finally, (5) IACS frame without a plexiglass top. CONCLUSIONS: Integration of simulation with human factor ergonomics and UCD, in partnership with mechanical engineers, facilitated a novel context to design and redesign a pediatric IACS to meet user needs and address safety concerns.

2.
Nat Mater ; 20(4): 503-510, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33510445

ABSTRACT

Despite progress in solid-state battery engineering, our understanding of the chemo-mechanical phenomena that govern electrochemical behaviour and stability at solid-solid interfaces remains limited compared to at solid-liquid interfaces. Here, we use operando synchrotron X-ray computed microtomography to investigate the evolution of lithium/solid-state electrolyte interfaces during battery cycling, revealing how the complex interplay among void formation, interphase growth and volumetric changes determines cell behaviour. Void formation during lithium stripping is directly visualized in symmetric cells, and the loss of contact that drives current constriction at the interface between lithium and the solid-state electrolyte (Li10SnP2S12) is quantified and found to be the primary cause of cell failure. The interphase is found to be redox-active upon charge, and global volume changes occur owing to partial molar volume mismatches at either electrode. These results provide insight into how chemo-mechanical phenomena can affect cell performance, thus facilitating the development of solid-state batteries.

3.
IEEE J Transl Eng Health Med ; 8: 1600103, 2020.
Article in English | MEDLINE | ID: mdl-32518738

ABSTRACT

OBJECTIVES: Worldwide efforts to protect front line providers performing endotracheal intubation during the COVID-19 pandemic have led to innovative devices. Authors evaluated the aerosol containment effectiveness of a novel intubation aerosol containment system (IACS) compared with a recently promoted intubation box and no protective barrier. METHODS: In a simulation center at the authors' university, the IACS was compared to no protective barrier and an intubation box. Aerosolization was simulated using a commercial fog machine and leakage of aerosolize mist was visually assessed. RESULTS: The IACS appeared to contain the aerosolized mist, while the intubation box allowed for mist to contact the laryngoscopist and contaminate the clinical space through arm port holes and the open caudal end. Both devices protected the laryngoscopist better than no protective barrier. DISCUSSION: The IACS with integrated sleeves and plastic drape appears to offer superior protection for the laryngoscopist and assistant providers from aerosolized particles.

4.
Smart Sustain Manuf Syst ; 1(1): 52-74, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28785744

ABSTRACT

This paper proposes a classification scheme for performance metrics for smart manufacturing systems. The discussion focuses on three such metrics: agility, asset utilization, and sustainability. For each of these metrics, we discuss classification themes, which we then use to develop a generalized classification scheme. In addition to the themes, we discuss a conceptual model that may form the basis for the information necessary for performance evaluations. Finally, we present future challenges in developing robust, performance-measurement systems for real-time, data-intensive enterprises.

5.
J Mech Behav Biomed Mater ; 71: 428-440, 2017 07.
Article in English | MEDLINE | ID: mdl-28431361

ABSTRACT

A methodology is proposed for uncertainty quantification and validation to accurately predict the mechanical response of lattice structures used in the design of scaffolds. Effective structural properties of the scaffolds are characterized using a developed multi-level stochastic upscaling process that propagates the quantified uncertainties at strut level to the lattice structure level. To obtain realistic simulation models for the stochastic upscaling process and minimize the experimental cost, high-resolution finite element models of individual struts were reconstructed from the micro-CT scan images of lattice structures which are fabricated by selective laser melting. The upscaling method facilitates the process of determining homogenized strut properties to reduce the computational cost of the detailed simulation model for the scaffold. Bayesian Information Criterion is utilized to quantify the uncertainties with parametric distributions based on the statistical data obtained from the reconstructed strut models. A systematic validation approach that can minimize the experimental cost is also developed to assess the predictive capability of the stochastic upscaling method used at the strut level and lattice structure level. In comparison with physical compression test results, the proposed methodology of linking the uncertainty quantification with the multi-level stochastic upscaling method enabled an accurate prediction of the elastic behavior of the lattice structure with minimal experimental cost by accounting for the uncertainties induced by the additive manufacturing process.


Subject(s)
Computer-Aided Design , Prosthesis Design , Tissue Scaffolds , Bayes Theorem , Finite Element Analysis , Porosity , Stochastic Processes , Uncertainty , X-Ray Microtomography
6.
Proc Math Phys Eng Sci ; 472(2187): 20150486, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27118907

ABSTRACT

Comprehensive understanding of thermomechanical response and microstructure evolution during surface severe plastic deformation (S2PD) is important towards establishing controllable processing frameworks. In this study, the evolution of crystallographic textures during directional surface mechanical attrition treatment on copper was studied and modelled using the visco-plastic self-consistent framework. In situ high-speed imaging and digital image correlation of surface deformation in circular indentation were employed to elucidate mechanics occurring in a unit process deformation and to calibrate texture model parameters. Material response during directional surface mechanical attrition was simulated using a finite-element model coupled with the calibrated texture model. The crystallographic textures developed during S2PD were observed to be similar to those resultant from uniaxial compression. The implications of these results towards facilitating a processing-based framework to predict deformation mechanics and resulting crystallographic texture in S2PD configurations are briefly discussed.

7.
Proc Math Phys Eng Sci ; 470(2166): 20130807, 2014 Jun 08.
Article in English | MEDLINE | ID: mdl-24910521

ABSTRACT

Plastic heterogeneity in indentation is fundamental for understanding mechanics of hardness testing and impression-based deformation processing methods. The heterogeneous deformation underlying plane-strain indentation was investigated in plastic loading of copper by a flat punch. Deformation parameters were measured, in situ, by tracking the motion of asperities in high-speed optical imaging. These measurements were coupled with multi-scale analyses of strength, microstructure and crystallographic texture in the vicinity of the indentation. Self-consistency is demonstrated in description of the deformation field using the in situ mechanics-based measurements and post-mortem materials characterization. Salient features of the punch indentation process elucidated include, among others, the presence of a dead-metal zone underneath the indenter, regions of intense strain rate (e.g. slip lines) and extent of the plastic flow field. Perhaps more intriguing are the transitions between shear-type and compression-type deformation modes over the indentation region that were quantified by the high-resolution crystallographic texture measurements. The evolution of the field concomitant to the progress of indentation is discussed and primary differences between the mechanics of indentation for a rigid perfectly plastic material and a strain-hardening material are described.

8.
J Med Device ; 7(4): 410051-410056, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24115973

ABSTRACT

A novel, hand-held Reference Point Indentation (RPI) instrument, measures how well the bone of living patients and large animals resists indentation. The results presented here are reported in terms of Bone Material Strength, which is a normalized measure of how well the bone resists indentation, and is inversely related to the indentation distance into the bone. We present examples of the instrument's use in: (1) laboratory experiments on bone, including experiments through a layer of soft tissue, (2) three human clinical trials, two ongoing in Barcelona and at the Mayo Clinic, and one completed in Portland, OR, and (3) two ongoing horse clinical trials, one at Purdue University and another at Alamo Pintado Stables in California. The instrument is capable of measuring consistent values when testing through soft tissue such as skin and periosteum, and does so handheld, an improvement over previous Reference Point Indentation instruments. Measurements conducted on horses showed reproducible results when testing the horse through tissue or on bare bone. In the human clinical trials, reasonable and consistent values were obtained, suggesting the Osteoprobe® is capable of measuring Bone Material Strength in vivo, but larger studies are needed to determine the efficacy of the instrument's use in medical diagnosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...