Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(13): e33544, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39040403

ABSTRACT

AÒ«ai fruit is characterized by the properties of its bioactive compounds; however, this fruit is highly perishable and its compounds are sensitive when exposed to non-optimal environmental factors. Therefore, the objective of this study was to encapsulate the fruit pulp by spray drying to improve the nutritional value and extend the shelf life of the products derived from acai fruit. Maltodextrin was used as a wall material and the process was optimized to obtain the desirable values of the response variables. For this, a central compound design (CCD) was developed to determine the influence of temperature (110-170 °C) and the wall material proportion (5-15 %) on dependent variables: the retention of ascorbic acid, moisture percentage, hygroscopicity, solubility, water activity, and yield. Furthermore, the effects of spray drying on bioactive compounds (AA, TPC, TFC, TA, TCC, GA, CT, and QC) and antioxidant activity (ABTS, DPPH, and ORAC) were evaluated. The maximum design temperature (170 °C) and wall material proportion (15 %) significantly influenced the response variables where encapsulation was applied, with high ascorbic acid retention (96.886 %), low moisture (0.303 %), low hygroscopicity (7.279 g/100 g), low level of water activity (0.255), a water solubility index of 23.206 %, and a high yield of 70.285 %. The bioactive compounds analyzed and the antioxidant capacity presented significant retention values for AA (96.86 %), TPC (65.13 %), TFC (82.09 %), TA (62.46 %), TCC (7.28 %), GA (35.02 %), CT (49.03 %), QC (37.57 %), ABTS (81.24 %), DPPH (75.11 %), and ORAC (15.68 %). Therefore, it is concluded that the powder obtained under these conditions has desirable physical properties, and the drying process preserved a notable retention of bioactive compounds and their antioxidant activities.

2.
Foods ; 12(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569120

ABSTRACT

Knowledge is limited about the level of bioactive compounds and antioxidant activity of seeds from bred lines of common beans developed from interspecific crosses using four different Phaseolus species (P. vulgaris L., P. coccineus L., P. acutifolius A. Gray. Gray., and P. dumosus). In this study, differences in the nutritional quality of seeds among 112 bean genotypes were evaluated by measuring the levels of phenolic compounds, pigments, antioxidant activity, and sugars. The bean genotypes were grown under high temperatures and acid soil conditions in the Amazon region of Colombia. Five typology groups of bean genotypes were identified based on the level of bioactive compounds and their functional capacity: (1) highly bioactive and functional (HBF); (2) moderately bioactive and functional (MBF); (3) moderate antioxidant content with pigment influence (MACP); (4) moderately antinutritional with limited antioxidant potential (MALAP); and (5) antinutritional, low bioactive, and functional (ALBF). We developed a nutritional quality index (NQI) with values ranging from 0 to 1 based on the nutritional and anti-nutritional balance of each genotype and the higher values of the NQI of a genotype indicating greater nutritional quality. We found three interspecific bred lines (SER 212, SER 213, and RRA 81), with NQI values higher than 0.8. These three lines belong to the typology group of HBF. The superior nutritional quality of these three interspecific bred lines is attributed to a greater level of bioactive compounds and antioxidant capacity. These three bred lines may serve as useful parents to develop nutritionally superior and stress-resilient beans from bean breeding programs. Further research is needed to explore the role of testa color in improving the nutritional quality of seeds of common bean genotypes grown under different climatic conditions.

3.
Comput Methods Biomech Biomed Engin ; 23(10): 601-610, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32310687

ABSTRACT

About 1.8 million new cancer cases are estimated in the US in 2019 from which 50-85% might metastasize to the thoracic and lumbar spines. Subject-specific quantitative computed tomography-based finite element analysis (QCT/FEA) is a promising used tool to predict vertebral fracture properties. The aims of this study were twofold: First, to develop an optimized equation for the elastic modulus accounting for all input parameters in FE modeling of fracture properties. Second, to assess the effect of lesion size and location on the predicted fracture loads. An inverse QCT/FEA method was implemented to determine optimal coefficients for the modulus equation as a function of ash density. Lesions of 16 and 20 mm were then virtually located at the center, off-centered, anterior, and posterior regions of the vertebrae. A total of 6426 QCT/FEA models were run to optimize the coefficients and evaluate the effect of lesions on fracture properties. QCT/FEA predicted stiffness showed high correlations (50%) with the experimentally measured values. Compared to a 16 mm lesion size, a 20 mm lesion had a reduction in failure load of 55%, 57%, 52%, and 44% at the center, off-centered, anterior cortex, and pedicle, respectively (p < 0.001). Lesions affecting mostly trabecular bone showed the largest reduction in predicted failure loads (about 55%), and females presented weaker outcomes than males. An optimal elastic modulus equation resulted in accurate vertebral stiffness predictions. A deterioration of the trabecular bone due to the presence of a lesion highly affected the predicted fracture loads, and this reduction was significantly higher in females compared to males.


Subject(s)
Elastic Modulus , Lumbar Vertebrae/physiopathology , Neoplasm Metastasis/pathology , Absorptiometry, Photon , Aged, 80 and over , Bone Density , Female , Finite Element Analysis , Humans , Lumbar Vertebrae/diagnostic imaging , Male , Multivariate Analysis , Tomography, X-Ray Computed , Weight-Bearing
4.
Bone ; 130: 115100, 2020 01.
Article in English | MEDLINE | ID: mdl-31678491

ABSTRACT

It is estimated that over 200 million people worldwide are affected by osteoporosis. Vertebral fracture risk prediction using dual energy x-ray absorptiometry (DXA) is confounded by limitations of the technology, such as 2D measurements of bone mineral density (BMD), inability to measure bone distribution and heterogeneity, and potential overestimations of BMD due to degenerative diseases. To overcome these shortcomings, single energy (SE) quantitative computed tomography (QCT) imaging estimates of Hounsfield units (HU) and volumetric BMD have been implemented as alternative methodologies for assessing fracture risk. However, marrow fat within the vertebrae can highly affect the vBMD and fracture properties estimations. To address this issue, 54 vertebrae were dissected from nine cadaveric spines and scanned using SE-QCT (120kVp) and dual energy (DE)-QCT (80/140 kVp), with the latter accounting for marrow fat within the vertebrae. The vertebrae were then scanned using DXA and subjected to mechanical testing to obtain fracture properties. aBMD outcomes from DXA showed a better correlation with DE-QCT vBMD versus SE outcomes [DE: aBMD vs. vBMD (R2: 0.61); SE: aBMD vs. vBMD (R2: 0.27)]. SE-QCT underestimated vertebral vBMD by -56% (p<0.0001) when compared to DE-QCT. vBMD estimates from SE-QCT could predict 45% and 37% of the vertebral failure loads and stiffness, respectively, compared to 67% and 46% from DE-QCT. DE-QCT vBMD outcomes highly correlated with fracture properties of vertebrae as compared to SE-QCT metrics. As DE scanning has the ability to correct for the effects of bone marrow fat, estimated vBMD from SE-QCT were significantly underestimated compared to DE-QCT. Dual energy CT scanning has the potential to more accurately predict vertebral failure and aid the clinician in the evaluation of appropriate interventions. Future studies should consider implementing DE-QCT in their fracture assessment.


Subject(s)
Bone Density , Fractures, Bone , Absorptiometry, Photon , Fractures, Bone/diagnostic imaging , Humans , Lumbar Vertebrae/diagnostic imaging , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...