Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Z Med Phys ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37031068

ABSTRACT

Absorbed dose heterogeneity in kidney tissues is an important issue in radiopharmaceutical therapy. The effect of absorbed dose heterogeneity in nephrotoxicity is, however, not fully understood yet, which hampers the implementation of treatment optimization by obscuring the interpretation of clinical response data and the selection of optimal treatment options. Although some dosimetry methods have been developed for kidney dosimetry to the level of microscopic renal substructures, the clinical assessment of the microscopic distribution of radiopharmaceuticals in kidney tissues currently remains a challenge. This restricts the anatomical resolution of clinical dosimetry, which hinders a thorough clinical investigation of the impact of absorbed dose heterogeneity. The potential of absorbed dose-response modelling to support individual treatment optimization in radiopharmaceutical therapy is recognized and gaining attraction. However, biophysical modelling is currently underexplored for the kidney, where particular modelling challenges arise from the convolution of a complex functional organization of renal tissues with the function-mediated dose distribution of radiopharmaceuticals. This article reviews and discusses the heterogeneity of absorbed dose distribution in kidney tissues and the absorbed dose-response modelling of nephrotoxicity in radiopharmaceutical therapy. The review focuses mainly on the peptide receptor radionuclide therapy with beta-particle emitting somatostatin analogues, for which the scientific literature reflects over two decades of clinical experience. Additionally, detailed research perspectives are proposed to address various identified challenges to progress in this field.

2.
Pharmaceutics ; 14(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36559060

ABSTRACT

Samarium-153 is a promising theranostic radionuclide, but low molar activities (Am) resulting from its current production route render it unsuitable for targeted radionuclide therapy (TRNT). Recent efforts combining neutron activation of 152Sm in the SCK CEN BR2 reactor with mass separation at CERN/MEDICIS yielded high-Am 153Sm. In this proof-of-concept study, we further evaluated the potential of high-Am 153Sm for TRNT by radiolabeling to DOTA-TATE, a well-established carrier molecule binding the somatostatin receptor 2 (SSTR2) that is highly expressed in gastroenteropancreatic neuroendocrine tumors. DOTA-TATE was labeled with 153Sm and remained stable up to 7 days in relevant media. The binding specificity and high internalization rate were validated on SSTR2-expressing CA20948 cells. In vitro biological evaluation showed that [153Sm]Sm-DOTA-TATE was able to reduce CA20948 cell viability and clonogenic potential in an activity-dependent manner. Biodistribution studies in healthy and CA20948 xenografted mice revealed that [153Sm]Sm-DOTA-TATE was rapidly cleared and profound tumor uptake and retention was observed whilst these were limited in normal tissues. This proof-of-concept study showed the potential of mass-separated 153Sm for TRNT and could open doors towards wider applications of mass separation in medical isotope production.

3.
Radiat Environ Biophys ; 61(4): 579-596, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36239799

ABSTRACT

Heterogeneity of dose distribution has been shown at different spatial scales in diagnostic nuclear medicine. In cancer treatment using new radiopharmaceuticals with alpha-particle emitters, it has shown an extensive degree of dose heterogeneity affecting both tumour control and toxicity of organs at risk. This review aims to provide an overview of generalized internal dosimetry in nuclear medicine and highlight the need of consideration of the dose heterogeneity within organs at risk. The current methods used for patient dosimetry in radiopharmaceutical therapy are summarized. Bio-distribution and dose heterogeneities of alpha-particle emitting pharmaceutical 223Ra (Xofigo) within bone tissues are presented as an example. In line with the strategical research agendas of the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radiation Dosimetry Group (EURADOS), future research direction of pharmacokinetic modelling and dosimetry in patient radiopharmaceutical therapy are recommended.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Radiopharmaceuticals/therapeutic use , Radioisotopes/therapeutic use , Alpha Particles/therapeutic use , Radiometry
4.
EJNMMI Radiopharm Chem ; 7(1): 28, 2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36274098

ABSTRACT

BACKGROUND: Quantification of actinium-225 through gamma counter measurements, when there is no secular equilibrium between actinium-225 and its gamma emitting daughters bismuth-213 and/or francium-221, can provide valuable information regarding the possible relocation of recoiled daughters such that related radiotoxicity effects can be evaluated. This study proposes a multiple time-point protocol using the bismuth-213 photopeak with measurements before secular equilibrium between actinium-225 and bismuth-213, and a single time-point protocol using both the francium-221 and bismuth-213 photopeak while assuming secular equilibrium between actinium-225 and francium-221 but not between bismuth-213 and actinium-225. RESULTS: Good agreement (i.e. 3% accuracy) was obtained when relying on a multiple time-points measurement of bismuth-213 to quantify both actinium-225 and excess of bismuth-213. Following scatter correction, actinium-225 can be accurately quantified using the francium-221 in a single time-point measurement within 3% of accuracy. The analysis performed on the stability data of [225Ac]Ac-DEPA and [225Ac]Ac-DOTA complexes, before secular equilibrium between bismuth-213 and actinium-225 was formed, revealed considerable amounts of unbound bismuth-213 (i.e. more than 90%) after 24 h of the radiolabeling most likely due to the recoiled daughter effect. CONCLUSION: Both protocols were able to accurately estimate 225Ac-activities provided the francium-221 energy window was corrected for the down scatter of the higher-energy gamma-emissions by bismuth-213. This could prove beneficial to study the recoiled daughter effect and redistribution of free bismuth-213 by monitoring the accumulation or clearance of bismuth-213 in different tissues during biodistribution studies or in patient samples during clinical studies. On the other hand, the single gamma counter measurement protocol, although required a 30 min waiting time, is more time and cost efficient and therefore more appropriate for standardized quality control procedures of 225Ac-labeled radiopharmaceuticals.

5.
EJNMMI Phys ; 7(1): 69, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33226485

ABSTRACT

BACKGROUND: Personalized molecular radiotherapy based on theragnostics requires accurate quantification of the amount of radiopharmaceutical activity administered to patients both in diagnostic and therapeutic applications. This international multi-center study aims to investigate the clinical measurement accuracy of radionuclide calibrators for 7 radionuclides used in theragnostics: 99mTc, 111In, 123I, 124I, 131I, 177Lu, and 90Y. METHODS: In total, 32 radionuclide calibrators from 8 hospitals located in the Netherlands, Belgium, and Germany were tested. For each radionuclide, a set of four samples comprising two clinical containers (10-mL glass vial and 3-mL syringe) with two filling volumes were measured. The reference value of each sample was determined by two certified radioactivity calibration centers (SCK CEN and JRC) using two secondary standard ionization chambers. The deviation in measured activity with respect to the reference value was determined for each radionuclide and each measurement geometry. In addition, the combined systematic deviation of activity measurements in a theragnostic setting was evaluated for 5 clinically relevant theragnostic pairs: 131I/123I, 131I/124I, 177Lu/111In, 90Y/99mTc, and 90Y/111In. RESULTS: For 99mTc, 131I, and 177Lu, a small minority of measurements were not within ± 5% range from the reference activity (percentage of measurements not within range: 99mTc, 6%; 131I, 14%; 177Lu, 24%) and almost none were outside ± 10% range. However, for 111In, 123I, 124I, and 90Y, more than half of all measurements were not accurate within ± 5% range (111In, 51%; 123I, 83%; 124I, 63%; 90Y, 61%) and not all were within ± 10% margin (111In, 22%; 123I, 35%; 124I, 15%; 90Y, 25%). A large variability in measurement accuracy was observed between radionuclide calibrator systems, type of sample container (vial vs syringe), and source-geometry calibration/correction settings used. Consequently, we observed large combined deviations (percentage deviation > ± 10%) for the investigated theragnostic pairs, in particular for 90Y/111In, 131I/123I, and 90Y/99mTc. CONCLUSIONS: Our study shows that substantial over- or underestimation of therapeutic patient doses is likely to occur in a theragnostic setting due to errors in the assessment of radioactivity with radionuclide calibrators. These findings underline the importance of thorough validation of radionuclide calibrator systems for each clinically relevant radionuclide and sample geometry.

6.
Phys Med ; 45: 134-142, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29472078

ABSTRACT

This study presents current status of performance of radiopharmaceutical activity measurements using radionuclide calibrators in Belgium. An intercomparison exercise was performed among 15 hospitals to test the accuracy of 99mTc, 18F and 111In activity measurements by means of radionuclide calibrators. Four sessions were held in different geographical regions between December 2013 and February 2015. The data set includes measurements from 38 calibrators, yielding 36 calibrations for 99mTc and 111In, and 21 calibrations for 18F. For each radionuclide, 3 ml of stock solution was measured in two clinical geometries: a 10 ml glass vial and a 10 ml syringe. The initial activity was typically 100 MBq for 99mTc, 15 MBq for 111In and 115 MBq for 18F. The reference value for the massic activity of the radioactive solutions was determined by means of primary and secondary standardisation techniques at the radionuclide metrology laboratory of the JRC. The overall results of the intercomparison were satisfactory for 99mTc and 18F, since most radionuclide calibrators (>70%) were accurate within ±5% of the reference value. Nevertheless, some devices underestimated the activity by 10-20%. Conversely, 111In measurements were strongly affected by source geometry effects and this had a negative impact on the accuracy of the measurements, in particular for the syringe sample. Large overestimations (up to 72%) were observed, even when taking into account the corrections and uncertainties supplied by the manufacturers for container effects. The results of this exercise encourage the hospitals to perform corrective actions to improve the calibration of their devices where needed.


Subject(s)
Calibration , Fluorine Radioisotopes , Indium Radioisotopes , Nuclear Medicine/instrumentation , Technetium , Belgium , Fluorine Radioisotopes/therapeutic use , Hospitals , Indium Radioisotopes/therapeutic use , Quality Assurance, Health Care , Technetium/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...