Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 298: 113507, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34388546

ABSTRACT

Since 2014, Mexican Caribbean coasts have experienced an atypical massive arrival of pelagic Sargassum accumulated on the shores triggers economic losses, public health problems, and ecosystem damaging near the coastline. Mechanical harvesting has been implemented ending in landfills. Since Sargassum algae represent abundant biomass in tropical regions of the world, it has shown potential as a feedstock to supply bioprocesses focused on obtaining high-value compounds and bioproducts. Nevertheless, there is a lack of data on the biochemical composition of Sargassum biomass from Mexican Caribbean coasts to propose valorization pathways. This study conducted a biochemical and elemental characterization of Sargassum biomass and compared, through statistical analysis, the effect of the season (dry and wet), place of collection (from the beach and shallow water), and method of extraction (Microwave-Assisted Extraction and Enzyme Assisted Extraction) on biomass composition. The biomass composition, expressed in dry weight basis, revealed 5-7% moisture content, 24-31 % ash, 2.6-3.8 % lipids, 1.8-7.0 %, total carbohydrates, 3-11 % total proteins, 1.5-2.31 mgGAg-1 total phenolic compounds (TPC), 2.7-2.9 kcal g-1 calorific power, and metals such as As (30-146.3 ppm), Fe (16.5-45 ppm), P (197-472 ppm). The most influential factor on the compositional content of Sargassum biomass was the season of the year, followed by the extraction method and the place of collection of Sargassum. These results will elucidate information on the biotechnological potential of Sargassum biomass from the Mexican Caribbean, contributing to sustainability challenges of the region, minimizing waste, and making the most of resources.


Subject(s)
Sargassum , Biomass , Caribbean Region , Ecosystem , Seasons
2.
Int J Biol Macromol ; 171: 398-413, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33422516

ABSTRACT

Diatoms are ubiquitous, biologically widespread, and have global significance due to their unique silica cell wall composition and noteworthy applied aspects. Diatoms are being extensively exploited for environmental monitoring, reconstruction, and stratigraphic correlation. However, considering all the rich elements of diatoms biology, the current literature lacks sufficient information on the therapeutic attributes and applied aspects of biological macromolecules from diatoms, hampering added advances in all aspects of diatom biology. Diatoms offer numerous high-value compounds, such as fatty acids, polysaccharides, polypeptides, pigments, and polyphenols. Diatoms with a high content of PUFA's are targets of transformation into high-value products through microalgal technologies due to their wide application and growing market as nutraceuticals and food supplements. Diatoms are renewable biomaterial, which can be used to develop drug delivery systems due to biocompatibility, surface area, cost-effective ratio, and ease in surface modifications. Innovative approaches are needed to envisage cost-effective ways for the isolation of bioactive compounds, enhance productivity, and elucidate the detailed mechanism of action. This review spotlights the notable applications of diatoms and their biologically active constituents, such as fucoxanthin and omega 3 fatty acids, among others with unique structural and functional entities.


Subject(s)
Diatoms/chemistry , Macromolecular Substances/therapeutic use , Dietary Supplements , Drug Delivery Systems , Fatty Acids/isolation & purification , Fatty Acids/therapeutic use , Humans , Macromolecular Substances/economics , Macromolecular Substances/isolation & purification , Peptides/isolation & purification , Peptides/therapeutic use , Polyphenols/isolation & purification , Polyphenols/therapeutic use , Polysaccharides/isolation & purification , Polysaccharides/therapeutic use , Protective Agents/therapeutic use , Sterols/isolation & purification , Sterols/therapeutic use , Xanthophylls/isolation & purification , Xanthophylls/therapeutic use
3.
Int J Biol Macromol ; 161: 1099-1116, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32526298

ABSTRACT

Lignocellulosic material has drawn significant attention among the scientific community due to its year-round availability as a renewable resource for industrial consumption. Being an economic substrate alternative, various industries are reevaluating processes to incorporate derived compounds from these materials. Varieties of fungi and bacteria have the ability to depolymerize lignocellulosic biomass by synthesizing degrading enzymes. Owing to catalytic activity stability and high yields of conversion, lignocellulolytic enzymes derived from fungi currently have a high spectrum of industrial applications. Moreover, these materials are cost effective, eco-friendly and nontoxic while having a low energy input. Techno-economic analysis for current enzyme production technologies indicates that synthetic production is not commercially viable. Instead, the economic projection of the use of naturally-produced ligninolytic enzymes is promising. This approach may improve the economic feasibility of the process by lowering substrate expenses and increasing lignocellulosic by-product's added value. The present review will discuss the classification and enzymatic degradation pathways of lignocellulolytic biomass as well as the potential and current industrial applications of the involved fungal enzymes.


Subject(s)
Biomass , Biotransformation , Cellulases/chemistry , Fungi/metabolism , Lignin/chemistry , Bacteria/enzymology , Bacteria/metabolism , Fungi/enzymology , Hydrolysis , Protein Engineering , Waste Products
4.
Sci Total Environ ; 715: 136978, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32014784

ABSTRACT

During the past years, the ecological integrity and biodiversity of marine ecosystems have been highly threatened due to the controlled or uncontrolled release of high concentrations of pollutants generated through anthropogenic activities. The occurrence of environmentally related hazardous pollutants, such as toxic elements, and recalcitrant compounds in various environmental matrices has raised increasing concern. Different technologies have been developed for efficient removal and complete mitigation or degradation of these toxic elements from the aquatic environment. Among them, biosorption and bioaccumulation by renewable and biodegradable sources are of supreme interest and have not been reviewed much. For instance, the invasive seaweed Sargassum sp. has been spotted as a cost-effective natural material to capture targeted pollutants from the coastal ecosystem, which is currently becoming a pressing problem, around the globe, due to its unusual proliferation near tropical shores. This review is an effort to cover the left behind gap to present the multifunctional potentialities of Sargassum sp. biomass. Herein, salient information is given to highlight the potential of Sargassum sp. biomass for environmental decontamination with particular focus to coastal ecosystems. Bioremediation mechanisms, challenges of implementation and factors involved in adsorption and absorption of pollutants by seaweeds are also discussed in this review. Against this background, a circular economy perspective is given for the integrated use of the algal raw material. The up-taken pollutants can be recovered and reintegrated into the value chain of industrial processes, while residual biomass is refined to obtain added-value products as bioactive compounds with potential applications for biofuel, agriculture, cosmetics, nutraceutical, pharmaceutical industries among others, to make the most of renewable resources.


Subject(s)
Sargassum , Adsorption , Biodegradation, Environmental , Biomass
5.
Biosensors (Basel) ; 8(2)2018 Mar 24.
Article in English | MEDLINE | ID: mdl-29587374

ABSTRACT

The increasing environmental pollution with particular reference to emerging contaminants, toxic heavy elements, and other hazardous agents is a serious concern worldwide. Considering this global issue, there is an urgent need to design and develop strategic measuring techniques with higher efficacy and precision to detect a broader spectrum of numerous contaminants. The development of precise instruments can further help in real-time and in-process monitoring of the generation and release of environmental pollutants from different industrial sectors. Moreover, real-time monitoring can also reduce the excessive consumption of several harsh chemicals and reagents with an added advantage of on-site determination of contaminant composition prior to discharge into the environment. With key scientific advances, electrochemical biosensors have gained considerable attention to solve this problem. Electrochemical biosensors can be an excellent fit as an analytical tool for monitoring programs to implement legislation. Herein, we reviewed the current trends in the use of electrochemical biosensors as novel tools to detect various contaminant types including toxic heavy elements. A particular emphasis was given to screen-printed electrodes, nanowire sensors, and paper-based biosensors and their role in the pollution detection processes. Towards the end, the work is wrapped up with concluding remarks and future perspectives. In summary, electrochemical biosensors and related areas such as bioelectronics, and (bio)-nanotechnology seem to be growing areas that will have a marked influence on the development of new bio-sensing strategies in future studies.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Environmental Monitoring/methods , Environmental Pollutants/metabolism , Environmental Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...