Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
3.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Article in English | MEDLINE | ID: mdl-34233165

ABSTRACT

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Subject(s)
Microglia/metabolism , Neural Inhibition/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Behavior, Animal , Gene Expression Regulation , HEK293 Cells , Humans , Mice , Parvalbumins/metabolism , Phenotype , Receptors, GABA-B/metabolism , Synapses/physiology , Transcription, Genetic
4.
Nat Neurosci ; 23(12): 1629-1636, 2020 12.
Article in English | MEDLINE | ID: mdl-32807948

ABSTRACT

Recent success in identifying gene-regulatory elements in the context of recombinant adeno-associated virus vectors has enabled cell-type-restricted gene expression. However, within the cerebral cortex these tools are largely limited to broad classes of neurons. To overcome this limitation, we developed a strategy that led to the identification of multiple new enhancers to target functionally distinct neuronal subtypes. By investigating the regulatory landscape of the disease gene Scn1a, we discovered enhancers selective for parvalbumin (PV) and vasoactive intestinal peptide-expressing interneurons. Demonstrating the functional utility of these elements, we show that the PV-specific enhancer allowed for the selective targeting and manipulation of these neurons across vertebrate species, including humans. Finally, we demonstrate that our selection method is generalizable and characterizes additional PV-specific enhancers with exquisite specificity within distinct brain regions. Altogether, these viral tools can be used for cell-type-specific circuit manipulation and hold considerable promise for use in therapeutic interventions.


Subject(s)
Dependovirus/genetics , Genetic Vectors/genetics , Interneurons/physiology , Animals , Callithrix , Cerebral Cortex/cytology , Female , Humans , Macaca mulatta , Mice , Mice, Inbred C57BL , NAV1.1 Voltage-Gated Sodium Channel/genetics , Neurons , Parvalbumins/physiology , Rats , Rats, Sprague-Dawley , Species Specificity , Vasoactive Intestinal Peptide/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...