Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 276
Filter
1.
PLoS Med ; 21(5): e1004364, 2024 May.
Article in English | MEDLINE | ID: mdl-38743771

ABSTRACT

BACKGROUND: The regional disparity of heatwave-related mortality over a long period has not been sufficiently assessed across the globe, impeding the localisation of adaptation planning and risk management towards climate change. We quantified the global mortality burden associated with heatwaves at a spatial resolution of 0.5°×0.5° and the temporal change from 1990 to 2019. METHODS AND FINDINGS: We collected data on daily deaths and temperature from 750 locations of 43 countries or regions, and 5 meta-predictors in 0.5°×0.5° resolution across the world. Heatwaves were defined as location-specific daily mean temperature ≥95th percentiles of year-round temperature range with duration ≥2 days. We first estimated the location-specific heatwave-mortality association. Secondly, a multivariate meta-regression was fitted between location-specific associations and 5 meta-predictors, which was in the third stage used with grid cell-specific meta-predictors to predict grid cell-specific association. Heatwave-related excess deaths were calculated for each grid and aggregated. During 1990 to 2019, 0.94% (95% CI: 0.68-1.19) of deaths [i.e., 153,078 cases (95% eCI: 109,950-194,227)] per warm season were estimated to be from heatwaves, accounting for 236 (95% eCI: 170-300) deaths per 10 million residents. The ratio between heatwave-related excess deaths and all premature deaths per warm season remained relatively unchanged over the 30 years, while the number of heatwave-related excess deaths per 10 million residents per warm season declined by 7.2% per decade in comparison to the 30-year average. Locations with the highest heatwave-related death ratio and rate were in Southern and Eastern Europe or areas had polar and alpine climates, and/or their residents had high incomes. The temporal change of heatwave-related mortality burden showed geographic disparities, such that locations with tropical climate or low incomes were observed with the greatest decline. The main limitation of this study was the lack of data from certain regions, e.g., Arabian Peninsula and South Asia. CONCLUSIONS: Heatwaves were associated with substantial mortality burden that varied spatiotemporally over the globe in the past 30 years. The findings indicate the potential benefit of governmental actions to enhance health sector adaptation and resilience, accounting for inequalities across communities.


Subject(s)
Climate Change , Extreme Heat , Humans , Extreme Heat/adverse effects , Global Health/trends , Hot Temperature/adverse effects , Mortality/trends , Seasons
2.
Epidemiol Serv Saude ; 33: e2024008, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38808901

ABSTRACT

OBJECTIVE: To create a protocol for performing minimally invasive autopsies (MIA) in detecting deaths from arboviruses and report preliminary data from its application in Ceará state, Brazil. METHODS: Training was provided to medical pathologists on MIA. RESULTS: A protocol was established for performing MIA, defining criteria for sample collection, storage methods, and diagnoses to be carried out according to the type of biological sample; 43 MIAs were performed in three months. Of these, 21 (48.8%) arrived at the Death Verification Service (SVO) with arboviruses as a diagnostic hypothesis, and seven (16.3%) were confirmed (six chikungunya cases and one dengue case); cases of COVID-19 (n = 9), tuberculosis (n = 5), meningitis (n = 4), cryptococcosis (n = 1), Creutzfeldt-Jakob disease (n = 1), breast cancer (n = 1), and human rabies (n = 1) were also confirmed. CONCLUSION: The protocol implemented enabled identification of a larger number of suspected arbovirus-related deaths, as well as confirmation of other diseases of interest for surveillance. MAIN RESULTS: A protocol was developed to perform minimally invasive autopsies (MIAs) in Death Verification Services (SVO), capable of expanding the system's capacity to identify a greater number of deaths suspected to be due to arboviruses. IMPLICATIONS FOR SERVICES: The experience suggests that in-service trained health professionals are able to perform MIA, and that use of this technique in SVOs has been shown to be capable of increasing the system's sensitivity in detecting deaths of interest to public health. PERSPECTIVES: Trained professionals will be able to collect biological material in hospitals, through MIA, in cases of interest for health surveillance and when family members do not allow a complete conventional autopsy to be performed.


Subject(s)
Arbovirus Infections , Autopsy , Humans , Brazil/epidemiology , Autopsy/methods , Arbovirus Infections/epidemiology , Arbovirus Infections/diagnosis , Arbovirus Infections/pathology , Female , Sensitivity and Specificity , Male , Middle Aged , Adult , Adolescent , Young Adult , Arboviruses/isolation & purification , Aged , Population Surveillance/methods , Epidemiological Monitoring , Cause of Death , Child , Child, Preschool
3.
Preprint in Portuguese | SciELO Preprints | ID: pps-8918

ABSTRACT

This article proposed to build collectively with the community of Ilha de Maré, located in Salvador, Bahia, Brazil; a text-territory-denouncement about environmental necropolitics and community resistance. The Ilha dos Abraços project, part of the Planet&Ar umbrella project, proposed working on popular surveillance through an artistic residency with a transdisciplinary group of artists, health professionals and urban planners to create a map of memories with the stories of the community and panels of graffiti that communicated in a "navigable book". The artistic residency took place between 11-20/11/2022 with workshops on comics, graffiti, planetary health; seven graffiti panels and interviews to compose the memory map. There is a need to know how to step into the territory to enter a traditional quilombola community and the perception not only of the oral tradition of Ilha de Maré, but also of listening, so the term "listenaction" is proposed. It also reflects on the island's invisibility in the face of pollution and public authorities, so art transgresses this silencing. Thus, planetary health can be an ally for the community's struggle, but the universalizing concept is questioned, proposing the idea of planetary(s) health(s).


Este artigo se propôs a construir coletivamente com a comunidade da Ilha de Maré, localizada em Salvador, Bahia, Brasil; um texto-território-denúncia sobre a necropolítica ambiental e a resistência da comunidade. O projeto Ilha dos Abraços, parte do projeto guarda-chuva Planet&Ar, se propôs trabalhar vigilância popular através de uma residência artística com um grupo transdisciplinar de artistas, profissionais da saúde e urbanistas para realizar um mapa de memórias com as histórias da comunidade e painéis de grafite que se comunicassem em um "livro navegável". A residência artística aconteceu entre 11-20/11/2022 com a realização de oficinas de quadrinhos, grafite, saúde planetária, sete painéis de grafite e entrevistas para a composição do mapa de memórias. Há a necessidade de saber pisar no território para adentrar uma comunidade quilombola e a percepção não apenas da tradição oral da Ilha de Maré, mas também a da escuta, e se propõe o termo "escutação". Reflete-se também sobre a invisibilização da ilha frente à poluição e aos poderes públicos, de forma que a arte transgride este silenciamento. Assim, saúde planetária pode ser uma aliada  para a luta da comunidade, porém questiona-se o conceito universalizante, propondo-se a ideia de saúde(s) planetária(s). 

4.
Tissue Cell ; 88: 102368, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38583225

ABSTRACT

Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.

5.
Environ Pollut ; 347: 123810, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38493867

ABSTRACT

Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 µg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 µg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.


Subject(s)
Air Pollutants , Air Pollution , Cardiovascular Diseases , Wildfires , Humans , Brazil/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Particulate Matter/analysis , Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis
6.
Rev Saude Publica ; 58: 08, 2024.
Article in English, Portuguese | MEDLINE | ID: mdl-38477779

ABSTRACT

OBJECTIVE: To evaluate the association between gestational age and green areas, urban built areas, and the concentration of particulate matter 2.5 (PM2.5) in the city of São Paulo, analyzing the irregular distribution of these areas and pollution levels above the recommended level. METHODS: The study population consisted of a cohort of live births from 2012, and data from the Live Birth Information System (Sinasc) of the city of São Paulo were used. Using satellite images and supervised classification, the distribution and quantity of green areas and built areas in the city of São Paulo was obtained, as well as the concentrations of PM2.5. Logistic regressions were used to obtain possible associations. RESULTS: The results of the study show that a lower percentage of green areas is significantly associated with a higher chance of preterm births. A higher building density was positively associated with the odds ratio for preterm birth. We did not find any significant associations between air pollution (PM2.5) and preterm births. CONCLUSIONS: The results of this study show that greener areas are less associated with preterm births when compared with less green areas.


Subject(s)
Air Pollution , Premature Birth , Infant, Newborn , Humans , Female , Brazil , Gestational Age , Particulate Matter
7.
J Hazard Mater ; 467: 133676, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38354440

ABSTRACT

Enormous health burden has been associated with air pollution and its effects continue to grow. However, the impact of air pollution on labour productivity at the population level is still unknown. This study assessed the association between premature death due to PM2.5 exposure and the loss of productivity-adjusted life years (PALYs), in Brazil. We applied a novel variant of the difference-in-difference (DID) approach to assess the association. Daily all-cause mortality data in Brazil were collected from 2000-2019. The PALYs lost increased by 5.11% (95% CI: 4.10-6.13%), for every 10 µg/m3 increase in the 2-day moving average of PM2.5. A total of 9,219,995 (95% CI: 7,491,634-10,921,141) PALYs lost and US$ 268.05 (95% CI: 217.82-317.50) billion economic costs were attributed to PM2.5 exposure, corresponding to 7.37% (95% CI: 5.99-8.73%) of the total PALYs lost due to premature death. This study also found that 5,005,306 PALYs could be avoided if the World Health Organization (WHO) air quality guideline (AQG) level was met. In conclusion, this study demonstrates that ambient PM2.5 exposure is associated with a considerable labour productivity burden relating to premature death in Brazil, while over half of the burden could be prevented if the WHO AQG was met. The findings highlight the need to reduce ambient PM2.5 levels and provide strong evidence for the development of strategies to mitigate the economic impacts of air pollution.


Subject(s)
Air Pollution , Brazil/epidemiology , Quality-Adjusted Life Years , Particulate Matter
8.
Environ Res ; 248: 118380, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38307182

ABSTRACT

Evidence suggests that myocardial interstitial fibrosis, resulting from cardiac remodeling, may possibly be influenced by mechanisms activated through the inhalation of airborne pollutants. However, limited studies have explored the relationship between lifetime exposure to carbon-based particles and cardiac fibrosis, specially using post-mortem samples. This study examined whether long-term exposure to air pollution (estimated by black carbon accumulated in the lungs) is associated with myocardial fibrosis in urban dwellers of megacity of Sao Paulo. Data collection included epidemiological and autopsy-based approaches. Information was obtained by interviewing the next of kin and through the pathologist's report. The individual index of exposure to carbon-based particles, which we designed as the fraction of black carbon (FBC), was estimated through quantification of particles on the macroscopic lung surface. Myocardium samples were collected for histopathological analysis to evaluate the fraction of cardiac fibrosis. The association between cardiac fibrosis and FBC, age, sex, smoking status and hypertension was assessed by means of multiple linear regression models. Our study demonstrated that the association of FBC with cardiac fibrosis is influenced by smoking status and hypertension. Among hypertensive individuals, the cardiac fibrosis fraction tended to increase with the increase of the FBC in both groups of smokers and non-smokers. In non-hypertensive individuals, the association between cardiac fibrosis fraction and FBC was observed primarily in smokers. Long-term exposure to tobacco smoke and environmental particles may contribute to the cardiac remodeling response in individuals with pre-existing hypertension. This highlights the importance of considering hypertension as an additional risk factor for the health effects of air pollution on the cardiovascular system. Moreover, the study endorses the role of autopsy to investigate the effects of urban environment and personal habits in determining human disease.


Subject(s)
Air Pollutants , Air Pollution , Hypertension , Humans , Air Pollutants/analysis , Brazil , Ventricular Remodeling , Lung , Fibrosis , Carbon/analysis
9.
Rev. saúde pública (Online) ; 58: 08, 2024. tab, graf
Article in English, Portuguese | LILACS | ID: biblio-1536772

ABSTRACT

ABSTRACT OBJECTIVE To evaluate the association between gestational age and green areas, urban built areas, and the concentration of particulate matter 2.5 (PM2.5) in the city of São Paulo, analyzing the irregular distribution of these areas and pollution levels above the recommended level. METHODS The study population consisted of a cohort of live births from 2012, and data from the Live Birth Information System (Sinasc) of the city of São Paulo were used. Using satellite images and supervised classification, the distribution and quantity of green areas and built areas in the city of São Paulo was obtained, as well as the concentrations of PM2.5. Logistic regressions were used to obtain possible associations. RESULTS The results of the study show that a lower percentage of green areas is significantly associated with a higher chance of preterm births. A higher building density was positively associated with the odds ratio for preterm birth. We did not find any significant associations between air pollution (PM2.5) and preterm births. CONCLUSIONS The results of this study show that greener areas are less associated with preterm births when compared with less green areas.


RESUMO OBJETIVO Avaliar a associação entre a idade gestacional e as áreas verdes, áreas construídas urbanas e a concentração de material particulado 2,5 (MP2,5) em São Paulo, analisando a distribuição irregular dessas áreas e os níveis de poluição acima do recomendado. MÉTODOS A população utilizada no estudo foi a dos nascidos vivos no ano de 2012, com os dados do Sistema de Informações sobre Nascidos Vivo (Sinasc) na cidade de São Paulo. Por meio de imagens de satélites e realizando a classificação supervisionada, obtivemos a distribuição e quantidade de áreas verdes e de áreas construídas, na cidade de São Paulo, assim como as concentrações de MP2,5. Regressões logísticas foram utilizadas para obter possíveis associações. RESULTADOS Os resultados do estudo mostram que menor percentual de áreas verdes está associado significativamente com maior chance de prematuridade. Maior densidade de construção foi associada positivamente com a razão de chance de nascimento prematuro. Não encontramos resultados significativos entre a poluição do ar (MP2,5) e prematuridade. CONCLUSÕES Os resultados deste estudo demostraram que áreas mais verdes em relação às áreas menos verdes são menos associadas a nascimentos prematuros.


Subject(s)
Humans , Male , Female , Pregnancy , Infant, Newborn , Infant, Premature , Air Pollution , Green Areas , Parks, Recreational , Built Environment
10.
Respir Res ; 24(1): 281, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964271

ABSTRACT

BACKGROUND: Lung fibrosis is a major concern in severe COVID-19 patients undergoing mechanical ventilation (MV). Lung fibrosis frequency in post-COVID syndrome is highly variable and even if the risk is proportionally small, many patients could be affected. However, there is still no data on lung extracellular matrix (ECM) composition in severe COVID-19 and whether it is different from other aetiologies of ARDS. METHODS: We have quantified different ECM elements and TGF-ß expression in lung tissue of 28 fatal COVID-19 cases and compared to 27 patients that died of other causes of ARDS, divided according to MV duration (up to six days or seven days or more). In COVID-19 cases, ECM elements were correlated with lung transcriptomics and cytokines profile. RESULTS: We observed that COVID-19 cases presented significant increased deposition of collagen, fibronectin, versican, and TGF-ß, and decreased decorin density when compared to non-COVID-19 cases of similar MV duration. TGF-ß was precociously increased in COVID-19 patients with MV duration up to six days. Lung collagen was higher in women with COVID-19, with a transition of upregulated genes related to fibrillogenesis to collagen production and ECM disassembly along the MV course. CONCLUSIONS: Fatal COVID-19 is associated with an early TGF-ß expression lung environment after the MV onset, followed by a disordered ECM assembly. This uncontrolled process resulted in a prominent collagen deposition when compared to other causes of ARDS. Our data provides pathological substrates to better understand the high prevalence of pulmonary abnormalities in patients surviving COVID-19.


Subject(s)
COVID-19 , Pulmonary Fibrosis , Respiratory Distress Syndrome , Humans , Female , Pulmonary Fibrosis/metabolism , COVID-19/metabolism , Extracellular Matrix/metabolism , Collagen/metabolism , Lung/metabolism , Transforming Growth Factor beta/pharmacology , Respiratory Distress Syndrome/metabolism
12.
J Appl Physiol (1985) ; 135(4): 950-955, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37675474

ABSTRACT

Endothelial dysfunction is a key phenomenon in COVID-19, induced by direct viral endothelial infection and secondary inflammation, mainly affecting the microvascular circulation. However, few studies described the subcellular aspects of the lung microvasculature and the associated thrombotic phenomena, which are widely present in severe COVID-19 cases. To that end, in this transversal observational study we performed transmission and scanning electron microscopy in nine lung samples of patients who died due to COVID-19, obtained via minimally invasive autopsies in Sao Paulo, Brazil, in 2020. All patients died due to acute respiratory failure and had microvascular thrombosis at histology. Electron microscopy revealed areas of endothelial damage with basal lamina disruption and virus infection in endothelial cells. In the capillary lumens, the ultrastructure of the thrombi is depicted, with red blood cells stacking, dysmorphism and hemolysis, fibrin meshworks, and extracellular traps. Our description illustrates the complex pathophysiology of microvascular thrombosis at the cellular level, which leads to some of the peculiar characteristics of severe COVID-19.NEW & NOTEWORTHY In this study, electron microscopy was used to explain the pathophysiology of respiratory failure in severe COVID-19. Before the advent of vaccination, as the virus entered the respiratory system, it rapidly progressed to the alveolar capillary network and, before causing exudative alveolar edema, it caused mainly thrombosis of the pulmonary microcirculation with preserved lung compliance explaining "happy hypoxia." Timing of anticoagulation is of pivotal importance in this disease.


Subject(s)
COVID-19 , Respiratory Insufficiency , Thrombosis , Humans , COVID-19/complications , SARS-CoV-2 , Endothelial Cells/pathology , Brazil , Lung/pathology , Respiratory Insufficiency/etiology
13.
Article in English | MEDLINE | ID: mdl-37283411

ABSTRACT

Visceral leishmaniasis (VL) is a chronic vector-borne zoonotic disease caused by trypanosomatids, considered endemic in 98 countries, mainly associated with poverty. About 50,000-90,000 cases of VL occur annually worldwide, and Brazil has the second largest number of cases in the world. The clinical picture of VL is fever, hepatosplenomegaly, and pancytopenia, progressing to death in 90% of cases due to secondary infections and multi-organ failure, if left untreated. We describe the case of a 25-year-old female who lived in the metropolitan area of Sao Paulo, who had recently taken touristic trips to several rural areas in Southeastern Brazil and was diagnosed post-mortem. During the hospitalization in a hospital reference for the treatment of COVID-19, the patient developed acute respiratory failure, with chest radiographic changes, and died due to refractory shock. The ultrasound-guided minimally invasive autopsy diagnosed VL (macrophages containing amastigote forms of Leishmania in the spleen, liver and bone marrow), as well as pneumonia and bloodstream infection by gram-negative bacilli.


Subject(s)
COVID-19 , Leishmaniasis, Visceral , Respiratory Insufficiency , Female , Humans , Adult , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/drug therapy , Diagnosis, Differential , Autopsy , COVID-19/diagnosis , Brazil , Respiratory Insufficiency/diagnosis , COVID-19 Testing
14.
Environ Int ; 174: 107906, 2023 04.
Article in English | MEDLINE | ID: mdl-37030285

ABSTRACT

BACKGROUND: Wildfire imposes a high mortality burden on Brazil. However, there is a limited assessment of the health economic losses attributable to wildfire-related fine particulate matter (PM2.5). METHODS: We collected daily time-series data on all-cause, cardiovascular, and respiratory mortality from 510 immediate regions in Brazil during 2000-2016. The chemical transport model GEOS-Chem driven with Global Fire Emissions Database (GFED), in combination with ground monitored data and machine learning was used to estimate wildfire-related PM2.5 data at a resolution of 0.25°â€ˆ× 0.25°. A time-series design was applied in each immediate region to assess the association between economic losses due to mortality and wildfire-related PM2.5 and the estimates were pooled at the national level using a random-effect meta-analysis. We used a meta-regression model to explore the modification effect of GDP and its sectors (agriculture, industry, and service) on economic losses. RESULTS: During 2000-2016, a total of US$81.08 billion economic losses (US$5.07 billion per year) due to mortality were attributable to wildfire-related PM2.5 in Brazil, accounting for 0.68% of economic losses and equivalent to approximately 0.14% of Brazil's GDP. The attributable fraction (AF) of economic losses due to wildfire-related PM2.5 was positively associated with the proportion of GDP from agriculture, while negatively associated with the proportion of GDP from service. CONCLUSION: Substantial economic losses due to mortality were associated with wildfires, which could be influenced by the agriculture and services share of GDP per capita. Our estimates of the economic losses of mortality could be used to determine optimal levels of investment and resources to mitigate the adverse health impacts of wildfires.


Subject(s)
Air Pollutants , Air Pollution , Fires , Wildfires , Brazil/epidemiology , Particulate Matter/adverse effects , Particulate Matter/analysis , Machine Learning , Air Pollutants/adverse effects , Air Pollutants/analysis , Smoke , Air Pollution/adverse effects , Air Pollution/analysis
15.
Front Endocrinol (Lausanne) ; 14: 1069243, 2023.
Article in English | MEDLINE | ID: mdl-37082122

ABSTRACT

Introduction: The timing of maternal exposure to air pollution is crucial to define metabolic changes in the offspring. Here we aimed to determine the most critical period of maternal exposure to particulate matter (PM2.5) that impairs offspring's energy metabolism and gut microbiota composition. Methods: Unexposed female and male C57BL/6J mice were mated. PM2.5 or filtered air (FA) exposure occurred only in gestation (PM2.5/FA) or lactation (FA/PM2.5). We studied the offspring of both genders. Results: PM2.5 exposure during gestation increased body weight (BW) at birth and from weaning to young in male adulthood. Leptin levels, food intake, Agrp, and Npy levels in the hypothalamus were also increased in young male offspring. Ikbke, Tnf increased in male PM2.5/FA. Males from FA/PM2.5 group were protected from these phenotypes showing higher O2 consumption and Ucp1 in the brown adipose tissue. In female offspring, we did not see changes in BW at weaning. However, adult females from PM2.5/FA displayed higher BW and leptin levels, despite increased energy expenditure and thermogenesis. This group showed a slight increase in food intake. In female offspring from FA/PM2.5, BW, and leptin levels were elevated. This group displayed higher energy expenditure and a mild increase in food intake. To determine if maternal exposure to PM2.5 could affect the offspring's gut microbiota, we analyzed alpha diversity by Shannon and Simpson indexes and beta diversity by the Linear Discriminant Analysis (LDA) in offspring at 30 weeks. Unlike males, exposure during gestation led to higher adiposity and leptin maintenance in female offspring at this age. Gestation exposure was associated with decreased alpha diversity in the gut microbiota in both genders. Discussion: Our data support that exposure to air pollution during gestation is more harmful to metabolism than exposure during lactation. Male offspring had an unfavorable metabolic phenotype at a young age. However, at an older age, only females kept more adiposity. Ultimately, our data highlight the importance of controlling air pollution, especially during gestation.


Subject(s)
Air Pollution , Gastrointestinal Microbiome , Prenatal Exposure Delayed Effects , Humans , Mice , Animals , Female , Male , Maternal Exposure/adverse effects , Leptin/metabolism , Prenatal Exposure Delayed Effects/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Particulate Matter/adverse effects , Body Weight , Air Pollution/adverse effects , Energy Metabolism
16.
Sci Total Environ ; 873: 162368, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36828065

ABSTRACT

Non-optimal temperatures are associated with premature deaths globally. However, the evidence is limited in low- and middle-income countries, and the productivity losses due to non-optimal temperatures have not been quantified. We aimed to estimate the work-related impacts and economic losses attributable to non-optimal temperatures in Brazil. We collected daily mortality data from 510 immediate regions in Brazil during 2000 and 2019. A two-stage time-series analysis was applied to evaluate the association between non-optimum temperatures and the Productivity-Adjusted Life-Years (PALYs) lost. The temperature-PALYs association was fitted for each location in the first stage and then we applied meta-analyses to obtain the national estimations. The attributable fraction (AF) of PALY lost due to ambient temperatures and the corresponding economic costs were calculated for different subgroups of the working-age population. A total of 3,629,661 of PALYs lost were attributed to non-optimal temperatures during 2000-2019 in Brazil, corresponding to 2.90 % (95 % CI: 1.82 %, 3.95 %) of the total PALYs lost. Non-optimal temperatures have led to US$104.86 billion (95 % CI: 65.95, 142.70) of economic costs related to PALYs lost and the economic burden was more substantial in males and the population aged 15-44 years. Higher risks of extreme cold temperatures were observed in the South region in Brazil while extreme hot temperatures were observed in the Central West and Northeast regions. In conclusion, non-optimal temperatures are associated with considerable labour losses as well as economic costs in Brazil. Tailored policies and adaptation strategies should be proposed to mitigate the impacts of non-optimal temperatures on the labour supply in a changing climate.


Subject(s)
Efficiency , Mortality, Premature , Male , Humans , Temperature , Quality-Adjusted Life Years , Brazil/epidemiology
17.
Lancet Planet Health ; 7(2): e172-e178, 2023 02.
Article in English | MEDLINE | ID: mdl-36754473

ABSTRACT

In this Viewpoint we argue that primary care practitioners should receive professional education in how to directly respond to planetary health challenges. We reflect on the provision of a massive open online course (MOOC) on planetary health for primary care practitioners in the context of existing training programmes. We describe the construction, delivery, and certification of a Global South-originated MOOC and explain aspects of its rhizomatic learning theory. We share baseline information and preliminary findings collected on the initial cohort of participants, including their profiles and previous knowledge about planetary health. We suggest that this MOOC is an appropriate response to planetary health challenges, and argue that cost-free, accredited planetary health education for primary care practitioners should be provided as a public good that also fulfils individual professionals' entitlement to quality education and continuing professional development.


Subject(s)
Education, Distance , Humans , Health Education , Global Health , Primary Health Care
18.
JAMA Netw Open ; 6(1): e2249440, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36598784

ABSTRACT

Importance: Dengue fever is a climate-sensitive infectious disease. However, its association with local hydrological conditions and the role of city development remain unclear. Objective: To quantify the association between hydrological conditions and dengue fever incidence in China and to explore the modification role of city development in this association. Design, Setting, and Participants: This cross-sectional study collected data between January 1, 2013, and December 31, 2019, from 54 cities in 4 coastal provinces in southeast China. The Standardized Precipitation Evapotranspiration Index (SPEI) was calculated from ambient temperature and precipitation, with SPEI thresholds of 2 for extreme wet conditions and -2 for extreme dry conditions. The SPEI-dengue fever incidence association was examined over a 6-month lag, and the modification roles of 5 city development dimensions were assessed. Data were analyzed in May 2022. Exposures: City-level monthly temperature, precipitation, SPEI, and annual city development indicators from 2013 to 2019. Main Outcomes and Measures: The primary outcome was city-level monthly dengue fever incidence. Spatiotemporal bayesian hierarchal models were used to examine the SPEI-dengue fever incidence association over a 6-month lag period. An interaction term between SPEI and each city development indicator was added into the model to assess the modification role of city development. Results: Included in the analysis were 70 006 dengue fever cases reported in 54 cities in 4 provinces in China from 2013 to 2019. Overall, a U-shaped cumulative curve was observed, with wet and dry conditions both associated with increased dengue fever risk. The relative risk [RR] peaked at a 1-month lag for extreme wet conditions (1.27; 95% credible interval [CrI], 1.05-1.53) and at a 6-month lag for extreme dry conditions (1.63; 95% CrI, 1.29-2.05). The RRs of extreme wet and dry conditions were greater in areas with limited economic development, health care resources, and income per capita. Extreme dry conditions were higher and prolonged in areas with more green space per capita (RR, 1.84; 95% CrI, 1.37-2.46). Highly urbanized areas had a higher risk of dengue fever after extreme wet conditions (RR, 1.80; 95% CrI, 1.26-2.56), while less urbanized areas had the highest risk of dengue fever in extreme dry conditions (RR, 1.70; 95% CrI, 1.11-2.60). Conclusions and Relevance: Results of this study showed that extreme hydrological conditions were associated with increased dengue fever incidence within a 6-month lag period, with different dimensions of city development playing various modification roles in this association. These findings may help in developing climate change adaptation strategies and public health interventions against dengue fever.


Subject(s)
Dengue , Humans , Incidence , Dengue/epidemiology , Bayes Theorem , Cross-Sectional Studies , China/epidemiology
19.
Circulation ; 147(1): 35-46, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36503273

ABSTRACT

BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. METHODS: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate.


Subject(s)
Cardiovascular Diseases , Heart Failure , Myocardial Ischemia , Stroke , Humans , Hot Temperature , Temperature , Cause of Death , Cold Temperature , Death , Mortality
20.
Sci Total Environ ; 854: 158636, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36087670

ABSTRACT

BACKGROUND AND AIM: The associations between COVID-19 transmission and meteorological factors are scientifically debated. Several studies have been conducted worldwide, with inconsistent findings. However, often these studies had methodological issues, e.g., did not exclude important confounding factors, or had limited geographic or temporal resolution. Our aim was to quantify associations between temporal variations in COVID-19 incidence and meteorological variables globally. METHODS: We analysed data from 455 cities across 20 countries from 3 February to 31 October 2020. We used a time-series analysis that assumes a quasi-Poisson distribution of the cases and incorporates distributed lag non-linear modelling for the exposure associations at the city-level while considering effects of autocorrelation, long-term trends, and day of the week. The confounding by governmental measures was accounted for by incorporating the Oxford Governmental Stringency Index. The effects of daily mean air temperature, relative and absolute humidity, and UV radiation were estimated by applying a meta-regression of local estimates with multi-level random effects for location, country, and climatic zone. RESULTS: We found that air temperature and absolute humidity influenced the spread of COVID-19 over a lag period of 15 days. Pooling the estimates globally showed that overall low temperatures (7.5 °C compared to 17.0 °C) and low absolute humidity (6.0 g/m3 compared to 11.0 g/m3) were associated with higher COVID-19 incidence (RR temp =1.33 with 95%CI: 1.08; 1.64 and RR AH =1.33 with 95%CI: 1.12; 1.57). RH revealed no significant trend and for UV some evidence of a positive association was found. These results were robust to sensitivity analysis. However, the study results also emphasise the heterogeneity of these associations in different countries. CONCLUSION: Globally, our results suggest that comparatively low temperatures and low absolute humidity were associated with increased risks of COVID-19 incidence. However, this study underlines regional heterogeneity of weather-related effects on COVID-19 transmission.


Subject(s)
COVID-19 , Humans , Temperature , Humidity , Cities/epidemiology , COVID-19/epidemiology , Incidence , Ultraviolet Rays , China/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...