Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38765978

ABSTRACT

Chromatin is organized into compartments enriched with functionally-related proteins driving non-linear biochemical activities. Some compartments, e.g. transcription foci, behave as liquid condensates. While the principles governing the enrichment of proteins within condensates are being elucidated, mechanisms that coordinate condensate dynamics with other nuclear processes like DNA replication have not been identified. We show that at the G1/S cell cycle transition, large transcription condensates form at histone locus bodies (HLBs) in a cyclin-dependent kinase 1 and 2 (CDK1/2)-dependent manner. As cells progress through S phase, ataxia-telangiectasia and Rad3-related (ATR) accumulates within HLBs and dissolves the associated transcription condensates. Integration of CDK1/2 and ATR signaling creates a phosphorylation code within the intrinsically-disordered region of mediator subunit 1 (MED1) coordinating condensate dynamics with DNA replication. Disruption of this code results in imbalanced histone biosynthesis, and consequently, global DNA damage. We propose the spatiotemporal dynamics of transcription condensates are actively controlled via phosphorylation and essential for viability of proliferating cells.

2.
Nucleic Acids Res ; 50(20): 11492-11508, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36318267

ABSTRACT

Breast cancers are known to be driven by the transcription factor estrogen receptor and its ligand estrogen. While the receptor's cis-binding elements are known to vary between tumors, heterogeneity of hormone signaling at a single-cell level is unknown. In this study, we systematically tracked estrogen response across time at a single-cell level in multiple cell line and organoid models. To accurately model these changes, we developed a computational tool (TITAN) that quantifies signaling gradients in single-cell datasets. Using this approach, we found that gene expression response to estrogen is non-uniform, with distinct cell groups expressing divergent transcriptional networks. Pathway analysis suggested the two most distinct signatures are driven separately by ER and FOXM1. We observed that FOXM1 was indeed activated by phosphorylation upon estrogen stimulation and silencing of FOXM1 attenuated the relevant gene signature. Analysis of scRNA-seq data from patient samples confirmed the existence of these divergent cell groups, with the FOXM1 signature predominantly found in ER negative cells. Further, multi-omic single-cell experiments indicated that the different cell groups have distinct chromatin accessibility states. Our results provide a comprehensive insight into ER biology at the single-cell level and potential therapeutic strategies to mitigate resistance to therapy.


Subject(s)
Breast Neoplasms , Epigenesis, Genetic , Estrogens , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Estrogens/pharmacology , Gene Expression Regulation, Neoplastic , Receptors, Estrogen/metabolism , Single-Cell Analysis , RNA-Seq
3.
EBioMedicine ; 73: 103646, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34689087

ABSTRACT

BACKGROUND: Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression. METHODS: We used molecular modelling to develop a series of rationally designed peptides to mimic and target FOXO4 disrupting the FOXO4-TP53 interaction and releasing TP53 to induce apoptosis. We then tested these peptides as senolytic agents for the elimination of senescent cells both in cell culture and in vivo. FINDINGS: Here we show that these peptides can act as senolytics for eliminating senescent human cancer cells both in cell culture and in orthotopic mouse models. We then further characterized one peptide, ES2, showing that it disrupts FOXO4-TP53 foci, activates TP53 mediated apoptosis and preferentially binds FOXO4 compared to TP53. Next, we show that intratumoural delivery of ES2 plus a BRAF inhibitor results in a significant increase in apoptosis and a survival advantage in mouse models of melanoma. Finally, we show that repeated systemic delivery of ES2 to older mice results in reduced senescent cell numbers in the liver with minimal toxicity. INTERPRETATION: Taken together, our results reveal that peptides can be generated to specifically target and eliminate FOXO4+ senescent cancer cells, which has implications for eradicating residual disease and as a combination therapy for frontline treatment of cancer. FUNDING: This work was supported by the Cancer Early Detection Advanced Research Center at Oregon Health & Science University.


Subject(s)
Antineoplastic Agents/chemistry , Cell Cycle Proteins/chemistry , Drug Design , Forkhead Transcription Factors/chemistry , Models, Molecular , Peptides/chemistry , Senotherapeutics/chemistry , Tumor Suppressor Protein p53/chemistry , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Cycle Proteins/metabolism , Cellular Senescence/drug effects , Disease Models, Animal , Female , Forkhead Transcription Factors/metabolism , Humans , Male , Melanoma , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/pharmacology , Protein Conformation , Senotherapeutics/pharmacology , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
4.
J Clin Invest ; 131(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34060485

ABSTRACT

Hypoxia, a hallmark feature of the tumor microenvironment, causes resistance to conventional chemotherapy, but was recently reported to synergize with poly(ADP-ribose) polymerase inhibitors (PARPis) in homologous recombination-proficient (HR-proficient) cells through suppression of HR. While this synergistic killing occurs under severe hypoxia (<0.5% oxygen), our study shows that moderate hypoxia (2% oxygen) instead promotes PARPi resistance in both HR-proficient and -deficient cancer cells. Mechanistically, we identify reduced ROS-induced DNA damage as the cause for the observed resistance. To determine the contribution of hypoxia to PARPi resistance in tumors, we used the hypoxic cytotoxin tirapazamine to selectively kill hypoxic tumor cells. We found that the selective elimination of hypoxic tumor cells led to a substantial antitumor response when used with PARPi compared with that in tumors treated with PARPi alone, without enhancing normal tissue toxicity. Since human breast cancers with BRAC1/2 mutations have an increased hypoxia signature and hypoxia reduces the efficacy of PARPi, then eliminating hypoxic tumor cells should enhance the efficacy of PARPi therapy.


Subject(s)
DNA Damage , Homologous Recombination , Neoplasms, Experimental , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Animals , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/genetics , Neoplasms, Experimental/metabolism , Xenograft Model Antitumor Assays
5.
EMBO J ; 40(11): e108486, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33969907

ABSTRACT

USP7 inhibitors are gaining momentum as a therapeutic strategy to stabilize p53 through their ability to induce MDM2 degradation. However, these inhibitors come with an unexpected p53-independent toxicity, via an unknown mechanism. In this issue of The EMBO Journal, Galarreta et al report how inhibition of USP7 leads to re-distribution of PP2A from cytoplasm to nucleus and an increase of deleterious CDK1-dependent phosphorylation throughout the cell cycle, revealing a new regulatory mechanism for the progression of S-phase cells toward mitosis to maintain genomic integrity.


Subject(s)
Cyclin B , Protein Phosphatase 2 , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , Cyclin B/genetics , Mitosis , Phosphorylation , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism
6.
Dev Cell ; 52(6): 675-676, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32208158

ABSTRACT

Replication stress underlies many genomic alterations in cancer cells. In this issue of Developmental Cell, Benedict et al. show that WAPL-dependent cohesin removal is needed to restart DNA synthesis at stalled forks and promote survival following replication stress, uncovering an unexpected link between stress and sister chromatid cohesion loss.


Subject(s)
Chromatids , Chromosomal Proteins, Non-Histone , Cell Cycle Proteins , DNA , DNA Replication , Cohesins
7.
Am J Respir Crit Care Med ; 199(1): 83-98, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30107138

ABSTRACT

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by progressive narrowing of pulmonary arteries, resulting in right heart failure and death. BMPR2 (bone morphogenetic protein receptor type 2) mutations account for most familial PAH forms whereas reduced BMPR2 is present in many idiopathic PAH forms, suggesting dysfunctional BMPR2 signaling to be a key feature of PAH. Modulating BMPR2 signaling is therapeutically promising, yet how BMPR2 is downregulated in PAH is unclear. OBJECTIVES: We intended to identify and pharmaceutically target BMPR2 modifier genes to improve PAH. METHODS: We combined siRNA high-throughput screening of >20,000 genes with a multicohort analysis of publicly available PAH RNA expression data to identify clinically relevant BMPR2 modifiers. After confirming gene dysregulation in tissue from patients with PAH, we determined the functional roles of BMPR2 modifiers in vitro and tested the repurposed drug enzastaurin for its propensity to improve experimental pulmonary hypertension (PH). MEASUREMENTS AND MAIN RESULTS: We discovered FHIT (fragile histidine triad) as a novel BMPR2 modifier. BMPR2 and FHIT expression were reduced in patients with PAH. FHIT reductions were associated with endothelial and smooth muscle cell dysfunction, rescued by enzastaurin through a dual mechanism: upregulation of FHIT as well as miR17-5 repression. Fhit-/- mice had exaggerated hypoxic PH and failed to recover in normoxia. Enzastaurin reversed PH in the Sugen5416/hypoxia/normoxia rat model, by improving right ventricular systolic pressure, right ventricular hypertrophy, cardiac fibrosis, and vascular remodeling. CONCLUSIONS: This study highlights the importance of the novel BMPR2 modifier FHIT in PH and the clinical value of the repurposed drug enzastaurin as a potential novel therapeutic strategy to improve PAH.


Subject(s)
Acid Anhydride Hydrolases/genetics , Familial Primary Pulmonary Hypertension/genetics , Genes, Modifier/genetics , Neoplasm Proteins/genetics , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Disease Models, Animal , Familial Primary Pulmonary Hypertension/metabolism , Female , Humans , Indoles/pharmacology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects
8.
Genes Chromosomes Cancer ; 58(5): 317-323, 2019 05.
Article in English | MEDLINE | ID: mdl-30242938

ABSTRACT

Genome instability is an enabling characteristic of cancer that facilitates the acquisition of oncogenic mutations that drive tumorigenesis. Underlying much of the instability in cancer is DNA replication stress, which causes both chromosome structural changes and single base-pair mutations. Common fragile sites are some of the earliest and most frequently altered loci in tumors. Notably, the fragile locus, FRA3B, lies within the fragile histidine triad (FHIT) gene, and consequently deletions within FHIT are common in cancer. We review the evidence in support of FHIT as a DNA caretaker and discuss the mechanism by which FHIT promotes genome stability. FHIT increases thymidine kinase 1 (TK1) translation to balance the deoxyribonucleotide triphosphates (dNTPs) for efficient DNA replication. Consequently, FHIT-loss causes replication stress, DNA breaks, aneuploidy, copy-number changes (CNCs), small insertions and deletions, and point mutations. Moreover, FHIT-loss-induced replication stress and DNA breaks cooperate with APOBEC3B overexpression to catalyze DNA hypermutation in cancer, as APOBEC family enzymes prefer single-stranded DNA (ssDNA) as substrates and ssDNA is enriched at sites of both replication stress and DNA breaks. Consistent with the frequent loss of FHIT across a broad spectrum of cancer types, FHIT-deficiency is highly associated with the ubiquitous, clock-like mutation signature 5 occurring in all cancer types thus far examined. The ongoing destabilization of the genome caused by FHIT loss underlies recurrent inactivation of tumor suppressors and activation of oncogenes. Considering that more than 50% of cancers are FHIT-deficient, we propose that FRA3B/FHIT fragility shapes the mutational landscape of cancer genomes.


Subject(s)
Acid Anhydride Hydrolases/genetics , Genomic Instability , Neoplasm Proteins/genetics , Neoplasms/genetics , Acid Anhydride Hydrolases/deficiency , Animals , Chromosome Fragile Sites , DNA Replication , Humans , Neoplasm Proteins/deficiency
9.
Science ; 361(6404): 806-810, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30139873

ABSTRACT

The cell cycle is strictly ordered to ensure faithful genome duplication and chromosome segregation. Control mechanisms establish this order by dictating when a cell transitions from one phase to the next. Much is known about the control of the G1/S, G2/M, and metaphase/anaphase transitions, but thus far, no control mechanism has been identified for the S/G2 transition. Here we show that cells transactivate the mitotic gene network as they exit the S phase through a CDK1 (cyclin-dependent kinase 1)-directed FOXM1 phosphorylation switch. During normal DNA replication, the checkpoint kinase ATR (ataxia-telangiectasia and Rad3-related) is activated by ETAA1 to block this switch until the S phase ends. ATR inhibition prematurely activates FOXM1, deregulating the S/G2 transition and leading to early mitosis, underreplicated DNA, and DNA damage. Thus, ATR couples DNA replication with mitosis and preserves genome integrity by enforcing an S/G2 checkpoint.


Subject(s)
G2 Phase/genetics , Mitosis/genetics , S Phase/genetics , Antigens, Surface/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/physiology , Cyclin B1/antagonists & inhibitors , Cyclin B1/metabolism , DNA Damage/genetics , DNA Replication/genetics , Forkhead Box Protein M1/metabolism , Gene Regulatory Networks , HCT116 Cells , Humans , Phosphorylation , Telomerase
10.
Science ; 359(6371): 30-31, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29302000
12.
Cell ; 170(4): 774-786.e19, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28802045

ABSTRACT

Conflicts between transcription and replication are a potent source of DNA damage. Co-transcriptional R-loops could aggravate such conflicts by creating an additional barrier to replication fork progression. Here, we use a defined episomal system to investigate how conflict orientation and R-loop formation influence genome stability in human cells. R-loops, but not normal transcription complexes, induce DNA breaks and orientation-specific DNA damage responses during conflicts with replication forks. Unexpectedly, the replisome acts as an orientation-dependent regulator of R-loop levels, reducing R-loops in the co-directional (CD) orientation but promoting their formation in the head-on (HO) orientation. Replication stress and deregulated origin firing increase the number of HO collisions leading to genome-destabilizing R-loops. Our findings connect DNA replication to R-loop homeostasis and suggest a mechanistic basis for genome instability resulting from deregulated DNA replication, observed in cancer and other disease states.


Subject(s)
DNA Replication , Transcription, Genetic , DNA Damage , DNA Replication Timing , Genomic Instability , HEK293 Cells , Humans , Plasmids
13.
Nat Rev Mol Cell Biol ; 18(10): 622-636, 2017 10.
Article in English | MEDLINE | ID: mdl-28811666

ABSTRACT

One way to preserve a rare book is to lock it away from all potential sources of damage. Of course, an inaccessible book is also of little use, and the paper and ink will continue to degrade with age in any case. Like a book, the information stored in our DNA needs to be read, but it is also subject to continuous assault and therefore needs to be protected. In this Review, we examine how the replication stress response that is controlled by the kinase ataxia telangiectasia and Rad3-related (ATR) senses and resolves threats to DNA integrity so that the DNA remains available to read in all of our cells. We discuss the multiple data that have revealed an elegant yet increasingly complex mechanism of ATR activation. This involves a core set of components that recruit ATR to stressed replication forks, stimulate kinase activity and amplify ATR signalling. We focus on the activities of ATR in the control of cell cycle checkpoints, origin firing and replication fork stability, and on how proper regulation of these processes is crucial to ensure faithful duplication of a challenging genome.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Replication , Eukaryota/metabolism , Animals , Genome , Genome, Human , Humans , Signal Transduction
14.
Biochim Biophys Acta Gene Regul Mech ; 1860(3): 374-382, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28093273

ABSTRACT

FHIT is a genome caretaker gene that is silenced in >50% of cancers. Loss of Fhit protein expression promotes accumulation of DNA damage, affects apoptosis and epithelial-mesenchymal transition, though molecular mechanisms underlying these alterations have not been fully elucidated. Initiation of genome instability directly follows Fhit loss and the associated reduced Thymidine Kinase 1 (TK1) protein expression. The effects on TK1 of Fhit knockdown and Fhit induction in the current study confirmed the role of Fhit in regulating TK1 expression. Changes in Fhit expression did not impact TK1 protein turnover or transcription from the TK1 promoter, nor steady-state levels of TK1 mRNA or turnover. Polysome profile analysis showed that up-regulated Fhit expression resulted in decreased TK1 RNA in non-translating messenger ribonucleoproteins and increased ribosome density on TK1 mRNA. Fhit does not bind RNA but its expression increased luciferase expression from a transgene bearing the TK1 5'-UTR. Fhit has been reported to act as a scavenger decapping enzyme, and a similar result with a mutant (H96) that binds but does not cleave nucleoside 5',5'-triphosphates suggests the impact on TK1 translation is due to its ability to modulate the intracellular level of cap-like molecules. Consistent with this, cells expressing Fhit mutants with reduced activity toward cap-like dinucleotides exhibit DNA damage resulting from TK1 deficiency, whereas cells expressing wild-type Fhit or the H96N mutant do not. The results have implications for the mechanism by which Fhit regulates TK1 mRNA, and more broadly, for its modulation of multiple functions as tumor suppressor/genome caretaker.


Subject(s)
Acid Anhydride Hydrolases/metabolism , Gene Expression Regulation, Enzymologic/physiology , Neoplasm Proteins/metabolism , Promoter Regions, Genetic/physiology , Thymidine Kinase/biosynthesis , Acid Anhydride Hydrolases/genetics , Amino Acid Substitution , Cell Line, Tumor , Humans , Mutation, Missense , Neoplasm Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Thymidine Kinase/genetics
15.
Cancer Sci ; 107(4): 528-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26782170

ABSTRACT

Loss of expression of Fhit, a tumor suppressor and genome caretaker, occurs in preneoplastic lesions during development of many human cancers. Furthermore, Fhit-deficient mouse models are exquisitely susceptible to carcinogen induction of cancers of the lung and forestomach. Due to absence of Fhit genome caretaker function, cultured cells and tissues of the constitutive Fhit knockout strain develop chromosome aneuploidy and allele copy number gains and losses and we hypothesized that Fhit-deficient cells would also develop point mutations. On analysis of whole exome sequences of Fhit-deficient tissues and cultured cells, we found 300 to >1000 single-base substitutions associated with Fhit loss in the 2% of the genome included in exomes, relative to the C57Bl6 reference genome. The mutation signature is characterized by increased C>T and T>C mutations, similar to the "age at diagnosis" signature identified in human cancers. The Fhit-deficiency mutation signature also resembles a C>T and T>C mutation signature reported for human papillary kidney cancers and a similar signature recently reported for esophageal and bladder cancers, cancers that are frequently Fhit deficient. The increase in T>C mutations in -/- exomes may be due to dNTP imbalance, particularly in thymidine triphosphate, resulting from decreased expression of thymidine kinase 1 in Fhit-deficient cells. Fhit-deficient kidney cells that survived in vitro dimethylbenz(a)anthracene treatment additionally showed increased T>A mutations, a signature generated by treatment with this carcinogen, suggesting that these T>A transversions may be evidence of carcinogen-induced preneoplastic changes.


Subject(s)
Acid Anhydride Hydrolases/genetics , Kidney Neoplasms/genetics , Lung Neoplasms/genetics , Neoplasm Proteins/genetics , Stomach Neoplasms/genetics , Animals , Carcinogens/toxicity , Exome/genetics , Gene Expression Regulation, Neoplastic , Genome , Humans , Kidney Neoplasms/chemically induced , Kidney Neoplasms/pathology , Lung Neoplasms/chemically induced , Lung Neoplasms/pathology , Mice , Mice, Knockout , Point Mutation/genetics , Stomach Neoplasms/chemically induced , Stomach Neoplasms/pathology
16.
J Clin Invest ; 125(9): 3657-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26301811

ABSTRACT

Juvenile ciliopathy syndromes that are associated with renal cysts and premature renal failure are commonly the result of mutations in the gene encoding centrosomal protein CEP290. In addition to centrosomes and the transition zone at the base of the primary cilium, CEP290 also localizes to the nucleus; however, the nuclear function of CEP290 is unknown. Here, we demonstrate that reduction of cellular CEP290 in primary human and mouse kidney cells as well as in zebrafish embryos leads to enhanced DNA damage signaling and accumulation of DNA breaks ex vivo and in vivo. Compared with those from WT mice, primary kidney cells from Cep290-deficient mice exhibited supernumerary centrioles, decreased replication fork velocity, fork asymmetry, and increased levels of cyclin-dependent kinases (CDKs). Treatment of Cep290-deficient cells with CDK inhibitors rescued DNA damage and centriole number. Moreover, the loss of primary cilia that results from CEP290 dysfunction was rescued in 3D cell culture spheroids of primary murine kidney cells after exposure to CDK inhibitors. Together, our results provide a link between CEP290 and DNA replication stress and suggest CDK inhibition as a potential treatment strategy for a wide range of ciliopathy syndromes.


Subject(s)
Antigens, Neoplasm/metabolism , Cerebellum/abnormalities , DNA Damage , Kidney/metabolism , Microtubule-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Nuclear Proteins/metabolism , Retina/abnormalities , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Animals , Antigens, Neoplasm/genetics , Cell Cycle Proteins , Cell Line , Centrioles/genetics , Centrioles/metabolism , Centrioles/pathology , Cerebellum/metabolism , Cerebellum/pathology , Cytoskeletal Proteins , DNA Replication , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Eye Abnormalities/pathology , Humans , Kidney/pathology , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/metabolism , Kidney Diseases, Cystic/pathology , Mice , Microtubule-Associated Proteins/genetics , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Retina/metabolism , Retina/pathology , Zebrafish/genetics , Zebrafish Proteins/genetics
17.
Oncotarget ; 6(5): 3409-19, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25401976

ABSTRACT

APOBEC cytidine deaminase activity is a major source of hypermutation in cancer. But previous studies have shown that the TC context signature of these enzymes is not observed in sizable fractions of cancers with overexpression of APOBEC, suggesting that cooperating factors that contribute to this mutagenesis should be identified. The fragile histidine triad protein (Fhit) is a tumor suppressor and DNA caretaker that is deleted or silenced in >50% of cancers. Loss of Fhit protein activity causes replication stress through reduced Thymidine Kinase 1 expression, increased DNA breaks, and global genome instability in normal and cancer cells. Using data from The Cancer Genome Atlas (TCGA), we show that FHIT-low/APOBEC3B-high expressing lung adenocarcinomas display significantly increased numbers of APOBEC signature mutations. Tumor samples in this cohort with normal FHIT expression do not exhibit APOBEC hypermutation, despite having high APOBEC3B expression. In vitro, silencing Fhit expression elevates APOBEC3B-directed C > T mutations in the TP53 gene. Furthermore, inhibition of Fhit loss-induced DNA damage via thymidine supplementation decreases the TP53 mutation burden in FHIT-low/APOBEC3B-high cells. We conclude that APOBEC3B overexpression and Fhit-loss induced DNA damage are independent events that, when occurring together, result in a significantly increased frequency of APOBEC-induced mutations that drive cancer progression.


Subject(s)
Acid Anhydride Hydrolases/genetics , Adenocarcinoma/genetics , Cytidine Deaminase/genetics , DNA Damage , Lung Neoplasms/genetics , Mutagenesis , Mutation , Neoplasm Proteins/genetics , Acid Anhydride Hydrolases/metabolism , Adenocarcinoma/enzymology , Adenocarcinoma/pathology , Adenocarcinoma of Lung , Cell Line , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cytidine Deaminase/metabolism , Databases, Genetic , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Gene Silencing , Genetic Predisposition to Disease , Humans , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Minor Histocompatibility Antigens , Neoplasm Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Transfection , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , WW Domain-Containing Oxidoreductase
18.
Cell Mol Life Sci ; 71(23): 4577-87, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25283145

ABSTRACT

The FHIT gene at FRA3B is one of the earliest and most frequently altered genes in the majority of human cancers. It was recently discovered that the FHIT gene is not the most fragile locus in epithelial cells, the cell of origin for most Fhit-negative cancers, eroding support for past claims that deletions at this locus are simply passenger events that are carried along in expanding cancer clones, due to extreme vulnerability to DNA damage rather than to loss of FHIT function. Indeed, recent reports have reconfirmed FHIT as a tumor suppressor gene with roles in apoptosis and prevention of the epithelial-mesenchymal transition. Other recent works have identified a novel role for the FHIT gene product, Fhit, as a genome "caretaker." Loss of this caretaker function leads to nucleotide imbalance, spontaneous replication stress, and DNA breaks. Because Fhit loss-induced DNA damage is "checkpoint blind," cells accumulate further DNA damage during subsequent cell cycles, accruing global genome instability that could facilitate oncogenic mutation acquisition and expedite clonal expansion. Loss of Fhit activity therefore induces a mutator phenotype. Evidence for FHIT as a mutator gene is discussed in light of these recent investigations of Fhit loss and subsequent genome instability.


Subject(s)
Acid Anhydride Hydrolases/genetics , Genes, Tumor Suppressor , Genomic Instability , Neoplasm Proteins/genetics , Neoplasms/genetics , Animals , Cell Cycle , DNA Damage , DNA Replication , Epithelial-Mesenchymal Transition , Humans , Neoplasms/pathology
19.
PLoS One ; 8(11): e80730, 2013.
Article in English | MEDLINE | ID: mdl-24244712

ABSTRACT

Loss of Fhit expression, encoded at chromosome fragile site FRA3B, leads to increased replication stress, genome instability and accumulation of genetic alterations. We have proposed that Fhit is a genome 'caretaker' whose loss initiates genome instability in preneoplastic lesions. We have characterized allele copy number alterations and expression changes observed in Fhit-deficient cells in conjunction with alterations in cellular proliferation and exome mutations, using cells from mouse embryo fibroblasts (MEFs), mouse kidney, early and late after establishment in culture, and in response to carcinogen treatment. Fhit (-/-) MEFs escape senescence to become immortal more rapidly than Fhit (+/+) MEFs; -/- MEFs and kidney cultures show allele losses and gains, while +/+ derived cells show few genomic alterations. Striking alterations in expression of p53, p21, Mcl1 and active caspase 3 occurred in mouse kidney -/- cells during progressive tissue culture passage. To define genomic changes associated with preneoplastic changes in vivo, exome DNAs were sequenced for +/+ and -/- liver tissue after treatment of mice with the carcinogen, 7,12-dimethylbenz[a]anthracene, and for +/+ and -/- kidney cells treated in vitro with this carcinogen. The -/- exome DNAs, in comparison with +/+ DNA, showed small insertions, deletions and point mutations in more genes, some likely related to preneoplastic changes. Thus, Fhit loss provides a 'mutator' phenotype, a cellular environment in which mild genome instability permits clonal expansion, through proliferative advantage and escape from apoptosis, in response to pressures to survive.


Subject(s)
Acid Anhydride Hydrolases/deficiency , Acid Anhydride Hydrolases/metabolism , Genomic Instability/physiology , Kidney/metabolism , Neoplasm Proteins/deficiency , Neoplasm Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Animals , Caspase 3/metabolism , Cell Line , Fibroblasts/metabolism , Genomic Instability/genetics , Loss of Heterozygosity , Mice , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Neoplasm Proteins/genetics , Tumor Suppressor Protein p53/metabolism , rho GTP-Binding Proteins/metabolism
20.
Genes Chromosomes Cancer ; 52(11): 1017-29, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23929738

ABSTRACT

Chromosomal positions of common fragile sites differ in lymphoblasts and fibroblasts, with positions dependent on the epigenetically determined density of replication origins at these loci. Because rearrangement of fragile loci and associated loss of fragile gene products are hallmarks of cancers, we aimed to map common fragile sites in epithelial cells, from which most cancers derive. Among the five most frequently activated sites in human epithelial cells were chromosome bands 2q33 and Xq22.1, which are not among top fragile sites identified in lymphoblasts or fibroblasts. FRA16D at 16q23 was among the top three fragile sites in the human epithelial cells examined, as it is in lymphoblasts and fibroblasts, while FRA3B at 3p14.2, the top fragile locus in lymphoblasts, was not fragile in most epithelial cell lines tested. Epithelial cells exhibited varying hierarchies of fragile sites; some frequent epithelial cell fragile sites are apparently not frequently altered in epithelial cancers and sites that are frequently deleted in epithelial cancers are not necessarily among the most fragile. Since we have reported that loss of expression of the FRA3B-encoded FHIT protein causes increased replication stress-induced DNA damage, we also examined the effect of FHIT-deficiency on markers of genome instability in epithelial cells. FHIT-deficient cells exhibited increases in fragile breaks and in γH2AX and 53BP1 foci in G1 phase cells, confirming in epithelial cells that the FHIT gene and encompassing FRA3B, is a "caretaker gene" necessary for maintenance of genome stability.


Subject(s)
Acid Anhydride Hydrolases/genetics , Chromosome Fragile Sites/genetics , Genomic Instability , Neoplasm Proteins/genetics , Neoplasms/genetics , Animals , Cell Line , Chromosomes, Human, Pair 2/genetics , Cytogenetic Analysis , Epithelial Cells/cytology , Epithelial Cells/physiology , G1 Phase/genetics , Genetic Markers , Humans , Mice , RNA Interference , Replication Origin , Small-Area Analysis , X Chromosome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...