Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(52): 31435-31441, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-35520639

ABSTRACT

We report an assessment of the influence of both finger geometry and vertically-oriented carbon nanofiber lengths in planar micro-supercapacitors. Increasing the finger number leads to an up-scaling in areal power densities, which increases with scan rate. Growing the nanofibers longer, however, does not lead to a proportional growth in capacitance, proposedly related to limited ion penetration of the electrode.

2.
Sci Technol Adv Mater ; 16(1): 015007, 2015 Feb.
Article in English | MEDLINE | ID: mdl-27877757

ABSTRACT

We describe a fast and cost-effective process for the growth of carbon nanofibers (CNFs) at a temperature compatible with complementary metal oxide semiconductor technology, using highly stable polymer-Pd nanohybrid colloidal solutions of palladium catalyst nanoparticles (NPs). Two polymer-Pd nanohybrids, namely poly(lauryl methacrylate)-block-poly((2-acetoacetoxy)ethyl methacrylate)/Pd (LauMA x -b-AEMA y /Pd) and polyvinylpyrrolidone/Pd were prepared in organic solvents and spin-coated onto silicon substrates. Subsequently, vertically aligned CNFs were grown on these NPs by plasma enhanced chemical vapor deposition at different temperatures. The electrical properties of the grown CNFs were evaluated using an electrochemical method, commonly used for the characterization of supercapacitors. The results show that the polymer-Pd nanohybrid solutions offer the optimum size range of palladium catalyst NPs enabling the growth of CNFs at temperatures as low as 350 °C. Furthermore, the CNFs grown at such a low temperature are vertically aligned similar to the CNFs grown at 550 °C. Finally the capacitive behavior of these CNFs was similar to that of the CNFs grown at high temperature assuring the same electrical properties thus enabling their usage in different applications such as on-chip capacitors, interconnects, thermal heat sink and energy storage solutions.

3.
Nano Lett ; 8(8): 2437-41, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18636782

ABSTRACT

We compare the level of deterioration in the basic functionality of individual transistors on ASIC chips fabricated in standard 130 nm bulk CMOS technology when subjected to three disparate CVD techniques with relatively low processing temperature to grow carbon nanostructures. We report that the growth technique with the lowest temperature has the least impact on the transistor behavior.


Subject(s)
Carbon/chemistry , Chemistry Techniques, Analytical/instrumentation , Chemistry Techniques, Analytical/methods , Nanostructures/chemistry , Microscopy, Electron, Scanning , Nanostructures/ultrastructure , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...