Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38647221

ABSTRACT

A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications in anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g. thalamic subregions, etc.) derived from high-resolution Mean Apparent Propagator-MRI, T2W, and magnetization transfer ratio images ex vivo. We then confirmed the location and borders of these segmented regions in the MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within Analysis of Functional NeuroImages software. Tracing and validating these important deep brain structures in 3D will improve neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, functional MRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.


Subject(s)
Atlases as Topic , Brain , Callithrix , Magnetic Resonance Imaging , Callithrix/anatomy & histology , Animals , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/anatomy & histology , Male , Female , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods
2.
bioRxiv ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38260391

ABSTRACT

A comprehensive three-dimensional digital brain atlas of cortical and subcortical regions based on MRI and histology has a broad array of applications for anatomical, functional, and clinical studies. We first generated a Subcortical Atlas of the Marmoset, called the "SAM," from 251 delineated subcortical regions (e.g., thalamic subregions, etc.) derived from the high-resolution MAP-MRI, T2W, and MTR images ex vivo. We then confirmed the location and borders of these segmented regions in MRI data using matched histological sections with multiple stains obtained from the same specimen. Finally, we estimated and confirmed the atlas-based areal boundaries of subcortical regions by registering this ex vivo atlas template to in vivo T1- or T2W MRI datasets of different age groups (single vs. multisubject population-based marmoset control adults) using a novel pipeline developed within AFNI. Tracing and validating these important deep brain structures in 3D improves neurosurgical planning, anatomical tract tracer injections, navigation of deep brain stimulation probes, fMRI and brain connectivity studies, and our understanding of brain structure-function relationships. This new ex vivo template and atlas are available as volumes in standard NIFTI and GIFTI file formats and are intended for use as a reference standard for marmoset brain research.

3.
Neuroimage ; 281: 120311, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37634884

ABSTRACT

Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.

4.
bioRxiv ; 2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37034636

ABSTRACT

Subcortical nuclei and other deep brain structures play essential roles in regulating the central and peripheral nervous systems. However, many of these nuclei and their subregions are challenging to identify and delineate in conventional MRI due to their small size, hidden location, and often subtle contrasts compared to neighboring regions. To address these limitations, we scanned the whole brain of the marmoset monkeys in ex vivo using a clinically feasible diffusion MRI method, called the mean apparent propagator (MAP)-MRI, along with T2W and MTR (T1-like contrast) images acquired at 7 Tesla. Additionally, we registered these multimodal MRI volumes to the high-resolution images of matched whole-brain histology sections with seven different stains obtained from the same brain specimens. At high spatial resolution, the microstructural parameters and fiber orientation distribution functions derived with MAP-MRI can distinguish the subregions of many subcortical and deep brain structures, including fiber tracts of different sizes and orientations. The good correlation with multiple but distinct histological stains from the same brain serves as a thorough validation of the structures identified with MAP-MRI and other MRI parameters. Moreover, the anatomical details of deep brain structures found in the volumes of MAP-MRI parameters are not visible in conventional T1W or T2W images. The high-resolution mapping using novel MRI contrasts, combined and correlated with histology, can elucidate structures that were previously invisible radiologically. Thus, this multimodal approach offers a roadmap toward identifying salient brain areas in vivo in future neuroradiological studies. It also provides a useful anatomical standard reference for the region definition of subcortical targets and the generation of a 3D digital template atlas for the marmoset brain research (Saleem et al., 2023). Additionally, we conducted a cross-species comparison between marmoset and macaque monkeys using results from our previous studies (Saleem et al., 2021). We found that the two species had distinct patterns of iron distribution in subregions of the basal ganglia, red nucleus, and deep cerebellar nuclei, confirmed with T2W MRI and histology.

5.
Neuroimage ; 264: 119653, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36257490

ABSTRACT

The variations in cellular composition and tissue architecture measured with histology provide the biological basis for partitioning the brain into distinct cytoarchitectonic areas and for characterizing neuropathological tissue alterations. Clearly, there is an urgent need to develop whole-brain neuroradiological methods that can assess cortical cyto- and myeloarchitectonic features non-invasively. Mean apparent propagator (MAP) MRI is a clinically feasible diffusion MRI method that quantifies efficiently and comprehensively the net microscopic displacements of water molecules diffusing in tissues. We investigate the sensitivity of high-resolution MAP-MRI to detecting areal and laminar variations in cortical cytoarchitecture and compare our results with observations from corresponding histological sections in the entire brain of a rhesus macaque monkey. High-resolution images of MAP-derived parameters, in particular the propagator anisotropy (PA), non-gaussianity (NG), and the return-to-axis probability (RTAP) reveal cortical area-specific lamination patterns in good agreement with the corresponding histological stained sections. In a few regions, the MAP parameters provide superior contrast to the five histological stains used in this study, delineating more clearly boundaries and transition regions between cortical areas and laminar substructures. Throughout the cortex, various MAP parameters can be used to delineate transition regions between specific cortical areas observed with histology and to refine areal boundaries estimated using atlas registration-based cortical parcellation. Using surface-based analysis of MAP parameters we quantify the cortical depth dependence of diffusion propagators in multiple regions-of-interest in a consistent and rigorous manner that is largely independent of the cortical folding geometry. The ability to assess cortical cytoarchitectonic features efficiently and non-invasively, its clinical feasibility, and translatability make high-resolution MAP-MRI a promising 3D imaging tool for studying whole-brain cortical organization, characterizing abnormal cortical development, improving early diagnosis of neurodegenerative diseases, identifying targets for biopsies, and complementing neuropathological investigations.


Subject(s)
Brain Mapping , Image Processing, Computer-Assisted , Animals , Brain Mapping/methods , Image Processing, Computer-Assisted/methods , Macaca mulatta , Magnetic Resonance Imaging/methods , Brain
6.
Front Neurosci ; 16: 1054509, 2022.
Article in English | MEDLINE | ID: mdl-36590291

ABSTRACT

High-resolution imaging studies have consistently shown that in cortical tissue water diffuses preferentially along radial and tangential orientations with respect to the cortical surface, in agreement with histology. These dominant orientations do not change significantly even if the relative contributions from microscopic water pools to the net voxel signal vary across experiments that use different diffusion times, b-values, TEs, and TRs. With this in mind, we propose a practical new framework for imaging non-parametric diffusion tensor distributions (DTDs) by constraining the microscopic diffusion tensors of the DTD to be diagonalized using the same orthonormal reference frame of the mesoscopic voxel. In each voxel, the constrained DTD (cDTD) is completely determined by the correlation spectrum of the microscopic principal diffusivities associated with the axes of the voxel reference frame. Consequently, all cDTDs are inherently limited to the domain of positive definite tensors and can be reconstructed efficiently using Inverse Laplace Transform methods. Moreover, the cDTD reconstruction can be performed using only data acquired efficiently with single diffusion encoding, although it also supports datasets with multiple diffusion encoding. In tissues with a well-defined architecture, such as the cortex, we can further constrain the cDTD to contain only cylindrically symmetric diffusion tensors and measure the 2D correlation spectra of principal diffusivities along the radial and tangential orientation with respect to the cortical surface. To demonstrate this framework, we perform numerical simulations and analyze high-resolution dMRI data from a fixed macaque monkey brain. We estimate 2D cDTDs in the cortex and derive, in each voxel, the marginal distributions of the microscopic principal diffusivities, the corresponding distributions of the microscopic fractional anisotropies and mean diffusivities along with their 2D correlation spectra to quantify the cDTD shape-size characteristics. Signal components corresponding to specific bands in these cDTD-derived spectra show high specificity to cortical laminar structures observed with histology. Our framework drastically simplifies the measurement of non-parametric DTDs in high-resolution datasets with mesoscopic voxel sizes much smaller than the radius of curvature of the underlying anatomy, e.g., cortical surface, and can be applied retrospectively to analyze existing diffusion MRI data from fixed cortical tissues.

7.
Neuroimage ; 245: 118759, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34838750

ABSTRACT

Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template "SC21" from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.


Subject(s)
Amygdala/anatomy & histology , Basal Ganglia/anatomy & histology , Brain Stem/anatomy & histology , Diffusion Tensor Imaging/methods , Hypothalamus/anatomy & histology , Thalamus/anatomy & histology , Amygdala/diagnostic imaging , Animals , Atlases as Topic , Basal Ganglia/diagnostic imaging , Brain Stem/diagnostic imaging , Histological Techniques , Hypothalamus/diagnostic imaging , Macaca mulatta , Magnetic Resonance Imaging , Male , Thalamus/diagnostic imaging
8.
Neuroimage ; 170: 121-131, 2018 04 15.
Article in English | MEDLINE | ID: mdl-28461058

ABSTRACT

The use of standard anatomical templates is common in human neuroimaging, as it facilitates data analysis and comparison across subjects and studies. For non-human primates, previous in vivo templates have lacked sufficient contrast to reliably validate known anatomical brain regions and have not provided tools for automated single-subject processing. Here we present the "National Institute of Mental Health Macaque Template", or NMT for short. The NMT is a high-resolution in vivo MRI template of the average macaque brain generated from 31 subjects, as well as a neuroimaging tool for improved data analysis and visualization. From the NMT volume, we generated maps of tissue segmentation and cortical thickness. Surface reconstructions and transformations to previously published digital brain atlases are also provided. We further provide an analysis pipeline using the NMT that automates and standardizes the time-consuming processes of brain extraction, tissue segmentation, and morphometric feature estimation for anatomical scans of individual subjects. The NMT and associated tools thus provide a common platform for precise single-subject data analysis and for characterizations of neuroimaging results across subjects and studies.


Subject(s)
Brain/anatomy & histology , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Macaca/anatomy & histology , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Animals , Brain/blood supply , Female , Male
9.
J Comp Neurol ; 525(16): 3488-3513, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28685822

ABSTRACT

In the primate auditory cortex, information flows serially in the mediolateral dimension from core, to belt, to parabelt. In the caudorostral dimension, stepwise serial projections convey information through the primary, rostral, and rostrotemporal (AI, R, and RT) core areas on the supratemporal plane, continuing to the rostrotemporal polar area (RTp) and adjacent auditory-related areas of the rostral superior temporal gyrus (STGr) and temporal pole. In addition to this cascade of corticocortical connections, the auditory cortex receives parallel thalamocortical projections from the medial geniculate nucleus (MGN). Previous studies have examined the projections from MGN to auditory cortex, but most have focused on the caudal core areas AI and R. In this study, we investigated the full extent of connections between MGN and AI, R, RT, RTp, and STGr using retrograde and anterograde anatomical tracers. Both AI and R received nearly 90% of their thalamic inputs from the ventral subdivision of the MGN (MGv; the primary/lemniscal auditory pathway). By contrast, RT received only ∼45% from MGv, and an equal share from the dorsal subdivision (MGd). Area RTp received ∼25% of its inputs from MGv, but received additional inputs from multisensory areas outside the MGN (30% in RTp vs. 1-5% in core areas). The MGN input to RTp distinguished this rostral extension of auditory cortex from the adjacent auditory-related cortex of the STGr, which received 80% of its thalamic input from multisensory nuclei (primarily medial pulvinar). Anterograde tracers identified complementary descending connections by which highly processed auditory information may modulate thalamocortical inputs.


Subject(s)
Auditory Cortex/anatomy & histology , Auditory Pathways/physiology , Brain Mapping , Macaca mulatta/anatomy & histology , Temporal Lobe/anatomy & histology , Thalamus/anatomy & histology , Acetylcholinesterase/metabolism , Amidines/metabolism , Animals , Biotin/analogs & derivatives , Biotin/metabolism , Cholera Toxin/metabolism , Dextrans/metabolism , Electroencephalography , Female , Male , Nerve Tissue Proteins/metabolism , Phenothiazines/metabolism
10.
Cereb Cortex ; 27(9): 4463-4477, 2017 09 01.
Article in English | MEDLINE | ID: mdl-27566980

ABSTRACT

We present a new 3D template atlas of the anatomical subdivisions of the macaque brain, which is based on and aligned to the magnetic resonance imaging (MRI) data set and histological sections of the Saleem and Logothetis atlas. We describe the creation and validation of the atlas that, when registered with macaque structural or functional MRI scans, provides a straightforward means to estimate the boundaries between architectonic areas, either in a 3D volume with different planes of sections, or on an inflated brain surface (cortical flat map). As such, this new template atlas is intended for use as a reference standard for macaque brain research. Atlases and templates are available as both volumes and surfaces in standard NIFTI and GIFTI formats.


Subject(s)
Brain/diagnostic imaging , Animals , Brain Mapping/methods , Imaging, Three-Dimensional/methods , Macaca , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging
11.
Cortex ; 86: 33-44, 2017 01.
Article in English | MEDLINE | ID: mdl-27880886

ABSTRACT

Developmental amnesia (DA) is a selective episodic memory disorder associated with hypoxia-induced bilateral hippocampal atrophy of early onset. Despite the systemic impact of hypoxia-ischaemia, the resulting brain damage was previously reported to be largely limited to the hippocampus. However, the thalamus and the mammillary bodies are parts of the hippocampal-diencephalic network and are therefore also at risk of injury following hypoxic-ischaemic events. Here, we report a neuroimaging investigation of diencephalic damage in a group of 18 patients with DA (age range 11-35 years), and an equal number of controls. Importantly, we uncovered a marked degree of atrophy in the mammillary bodies in two thirds of our patients. In addition, as a group, patients had mildly reduced thalamic volumes. The size of the anterior-mid thalamic (AMT) segment was correlated with patients' visual memory performance. Thus, in addition to the hippocampus, the diencephalic structures also appear to play a role in the patients' memory deficit.


Subject(s)
Amnesia/pathology , Hippocampus/pathology , Mammillary Bodies/pathology , Adolescent , Adult , Amnesia/diagnostic imaging , Atrophy/diagnostic imaging , Atrophy/pathology , Child , Female , Hippocampus/diagnostic imaging , Humans , Male , Mammillary Bodies/diagnostic imaging , Memory, Episodic , Memory, Short-Term , Young Adult
12.
Cereb Cortex ; 27(1): 809-840, 2017 01 01.
Article in English | MEDLINE | ID: mdl-26620266

ABSTRACT

In the ventral stream of the primate auditory cortex, cortico-cortical projections emanate from the primary auditory cortex (AI) along 2 principal axes: one mediolateral, the other caudorostral. Connections in the mediolateral direction from core, to belt, to parabelt, have been well described, but less is known about the flow of information along the supratemporal plane (STP) in the caudorostral dimension. Neuroanatomical tracers were injected throughout the caudorostral extent of the auditory core and rostral STP by direct visualization of the cortical surface. Auditory cortical areas were distinguished by SMI-32 immunostaining for neurofilament, in addition to established cytoarchitectonic criteria. The results describe a pathway comprising step-wise projections from AI through the rostral and rostrotemporal fields of the core (R and RT), continuing to the recently identified rostrotemporal polar field (RTp) and the dorsal temporal pole. Each area was strongly and reciprocally connected with the areas immediately caudal and rostral to it, though deviations from strictly serial connectivity were observed. In RTp, inputs converged from core, belt, parabelt, and the auditory thalamus, as well as higher order cortical regions. The results support a rostrally directed flow of auditory information with complex and recurrent connections, similar to the ventral stream of macaque visual cortex.


Subject(s)
Auditory Cortex/cytology , Animals , Auditory Pathways/cytology , Female , Macaca mulatta , Male , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology
13.
J Neurosci ; 36(37): 9580-9, 2016 09 14.
Article in English | MEDLINE | ID: mdl-27629710

ABSTRACT

UNLABELLED: Visual motion responses in the brain are shaped by two distinct sources: the physical movement of objects in the environment and motion resulting from one's own actions. The latter source, termed visual reafference, stems from movements of the head and body, and in primates from the frequent saccadic eye movements that mark natural vision. To study the relative contribution of reafferent and stimulus motion during natural vision, we measured fMRI activity in the brains of two macaques as they freely viewed >50 hours of naturalistic video footage depicting dynamic social interactions. We used eye movements obtained during scanning to estimate the level of reafferent retinal motion at each moment in time. We also estimated the net stimulus motion by analyzing the video content during the same time periods. Mapping the responses to these distinct sources of retinal motion, we found a striking dissociation in the distribution of visual responses throughout the brain. Reafferent motion drove fMRI activity in the early retinotopic areas V1, V2, V3, and V4, particularly in their central visual field representations, as well as lateral aspects of the caudal inferotemporal cortex (area TEO). However, stimulus motion dominated fMRI responses in the superior temporal sulcus, including areas MT, MST, and FST as well as more rostral areas. We discuss this pronounced separation of motion processing in the context of natural vision, saccadic suppression, and the brain's utilization of corollary discharge signals. SIGNIFICANCE STATEMENT: Visual motion arises not only from events in the external world, but also from the movements of the observer. For example, even if objects are stationary in the world, the act of walking through a room or shifting one's eyes causes motion on the retina. This "reafferent" motion propagates into the brain as signals that must be interpreted in the context of real object motion. The delineation of whole-brain responses to stimulus versus self-generated retinal motion signals is critical for understanding visual perception and is of pragmatic importance given the increasing use of naturalistic viewing paradigms. The present study uses fMRI to demonstrate that the brain exhibits a fundamentally different pattern of responses to these two sources of retinal motion.


Subject(s)
Brain/diagnostic imaging , Eye Movements/physiology , Magnetic Resonance Imaging , Motion Perception/physiology , Motion , Visual Pathways/diagnostic imaging , Animals , Brain/physiology , Brain Mapping , Female , Image Processing, Computer-Assisted , Macaca mulatta , Models, Biological , Nonlinear Dynamics , Oxygen/blood , Photic Stimulation , Visual Pathways/physiology
14.
Neuron ; 90(6): 1325-1342, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27263973

ABSTRACT

The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages.


Subject(s)
Amygdala/physiology , Basal Ganglia/physiology , Pulvinar/physiology , Visual Cortex/physiology , Visual Pathways/physiology , Animals , Face , Macaca fascicularis , Macaca mulatta , Neuroanatomical Tract-Tracing Techniques , Prefrontal Cortex/physiology , Recognition, Psychology/physiology
15.
Elife ; 42015 Dec 17.
Article in English | MEDLINE | ID: mdl-26673891

ABSTRACT

The macaque orbitofrontal cortex (OFC) is essential for selecting goals based on current, updated values of expected reward outcomes. As monkeys consume a given type of reward to satiety, its value diminishes, and OFC damage impairs the ability to shift goal choices away from devalued outcomes. To examine the contributions of OFC's components to goal selection, we reversibly inactivated either its anterior (area 11) or posterior (area 13) parts. We found that neurons in area 13 must be active during the selective satiation procedure to enable the updating of outcome valuations. After this updating has occurred, however, area 13 is not needed to select goals based on this knowledge. In contrast, neurons in area 11 do not need to be active during the value-updating process. Instead, inactivation of this area during choices causes an impairment. These findings demonstrate selective and complementary specializations within the OFC.


Subject(s)
Goals , Macaca mulatta , Neurons/physiology , Prefrontal Cortex/physiology , Satiation , Animals , Choice Behavior , Decision Making
16.
Comp Med ; 65(1): 77-82, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25730761

ABSTRACT

Rapid, serial, and humane collection of cerebrospinal fluid (CSF) in nonhuman primates (NHP) is an essential element of numerous research studies and is currently accomplished via two different models. The CSF reservoir model (FR) combines a catheter in the 4th ventricle with a flexible silastic reservoir to permit circulating CSF flow. The CSF lateral port model (LP) consists of a lateral ventricular catheter and an IV port that provides static access to CSF and volume restrictions on sample collection. The FR model is associated with an intensive, prolonged recovery and frequent postsurgical hydrocephalus and nonpatency, whereas the LP model is associated with an easier recovery. To maximize the advantages of both systems, we developed the CSF lateral reservoir model (LR), which combines the beneficial features of the 2 previous models but avoids their limitations by using a reservoir for circulating CSF flow combined with catheter placement in the lateral ventricle. Nine adult male rhesus monkeys were utilized in this study. Pre-surgical MRI was performed to determine the coordinates of the lateral ventricle and location of choroid plexus (CP). The coordinates were determined to avoid the CP and major blood vessels. The predetermined coordinates were 100% accurate, according to MRI validation. The LR system functioned successfully in 67% of cases for 221 d, and 44% remain functional at 426 to 510 d postoperatively. Compared with established models, our LR model markedly reduced postoperative complications and recovery time. Development of the LR model was successful in rhesus macaques and is a useful alternative to the FR and LP methods of CSF collection from nonhuman primates.


Subject(s)
Catheterization/methods , Cerebrospinal Fluid/chemistry , Macaca mulatta , Models, Animal , Specimen Handling/methods , Animals , Lateral Ventricles/surgery , Magnetic Resonance Imaging , Male
17.
Brain Res ; 1600: 42-58, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25529630

ABSTRACT

Fronto-limbic circuits in the primate brain are responsible for executive function, learning and memory, and emotions, including fear. Consequently, changes in gene expression in cortical and subcortical brain regions housing these circuits are associated with many important psychiatric and neurological disorders. While high quality gene expression profiles can be identified in brains from model organisms, primate brains have unique features such as Brodmann Area 25, which is absent in rodents, yet profoundly important in primates, including humans. The potential insights to be gained from studying the human brain are complicated by the fact that the post-mortem interval (PMI) is variable, and most repositories keep solid tissue in the deep frozen state. Consequently, sampling the important medial and internal regions of these brains is difficult. Here we describe a novel method for obtaining discrete regions from the fronto-limbic circuits of a 4 year old and a 5 year old, male, intact, frozen non-human primate (NHP) brain, for which the PMI is exactly known. The method also preserves high quality RNA, from which we use transcriptional profiling and a new algorithm to identify region-exclusive RNA signatures for Area 25 (NFκB and dopamine receptor signaling), the anterior cingulate cortex (LXR/RXR signaling), the amygdala (semaphorin signaling), and the hippocampus (Ca(++) and retinoic acid signaling). The RNA signatures not only reflect function of the different regions, but also include highly expressed RNAs for which function is either poorly understood, or which generate proteins presently lacking annotated functions. We suggest that this new approach will provide a useful strategy for identifying changes in fronto-limbic system biology underlying normal development, aging and disease in the human brain.


Subject(s)
Frontal Lobe/metabolism , Gene Expression Profiling/methods , Limbic Lobe/metabolism , Sequence Analysis, RNA/methods , Algorithms , Animals , Biomarkers/metabolism , Macaca mulatta , Male
18.
Proc Natl Acad Sci U S A ; 111(46): 16574-9, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368179

ABSTRACT

Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.


Subject(s)
Connectome/methods , Diffusion Magnetic Resonance Imaging/methods , Diffusion Tensor Imaging/methods , Macaca mulatta/anatomy & histology , Algorithms , Animals , Axonal Transport , Axons/ultrastructure , Body Water , Contrast Media , Diffusion , Diffusion Magnetic Resonance Imaging/statistics & numerical data , Diffusion Tensor Imaging/statistics & numerical data , Gadolinium DTPA , Leucine/pharmacokinetics , Male , Models, Neurological , Motor Cortex/anatomy & histology , Occipital Lobe/anatomy & histology , Proline/pharmacokinetics , ROC Curve , Research Design , Sensitivity and Specificity , Tritium/analysis , White Matter/anatomy & histology
19.
J Comp Neurol ; 522(7): 1641-90, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24214159

ABSTRACT

Neuroanatomical studies have long indicated that corticocortical connections are organized in networks that relate distinct sets of areas. Such networks have been emphasized by development of functional imaging methods for correlating activity across the cortex. Previously, two networks were recognized in the orbitomedial prefrontal cortex, the "orbital" and "medial" networks (OPFC and MPFC, respectively). In this study, three additional networks are proposed for the lateral prefrontal cortex: 1) a ventrolateral network (VLPFC) in and ventral to the principal sulcus; 2) a dorsal network (DPFC) in and dorsal to the principal sulcus and in the frontal pole; 3) a caudolateral network (CLPFC) in and rostral to the arcuate sulcus and the caudal principal sulcus. The connections of the first two networks are described here. Areas in each network are connected primarily with other areas in the same network, with overlaps around the principal sulcus. The VLPFC and DPFC are also connected with the OPFC and MPFC, respectively. Outside the prefrontal cortex, the VLPFC connects with specific areas related to somatic/visceral sensation and vision, in the frontoparietal operculum, insula, ventral bank/fundus of the superior temporal sulcus, inferior temporal gyrus, and inferior parietal cortex. In contrast, the DPFC connects with the rostral superior temporal gyrus, dorsal bank of the superior temporal sulcus, parahippocampal cortex, and posterior cingulate and retrosplenial cortex. Area 45a, in caudal VLPFC, is unique, having connections with all the networks. Its extrinsic connections resemble those of the DPFC. In addition, it has connections with both auditory belt/parabelt areas, and visual related areas.


Subject(s)
Prefrontal Cortex/anatomy & histology , Animals , Cerebral Cortex/anatomy & histology , Macaca fascicularis , Magnetic Resonance Imaging , Neural Pathways/anatomy & histology , Neuroanatomical Tract-Tracing Techniques , Neurons/cytology , Temporal Lobe/anatomy & histology
20.
Comp Med ; 63(4): 355-60, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24209972

ABSTRACT

Pediatric diffuse intrinsic pontine gliomas are aggressive brainstem tumors that fail to respond to treatment. We hypothesize that the protective features of the pons may hinder chemotherapeutic agents from entering pontine tissue compared with cortical brain tissue. To test this hypothesis, we developed a unique nonhuman primate model using microdialysis, a continuous in vivo extracellular sampling technique, to compare drug exposure concurrently in pontine tissue, cortical tissue, CSF, and plasma after intravenous administration of chemotherapeutic agents. The surgical coordinates and approach for microdialysis cannula-probe placement were determined in 5 adult male rhesus monkeys (Macaca mulatta) by using MRI. Microdialysis cannulas-probes were implanted stereotactically in the brain, retrodialysis was performed to measure relative recovery, and a 1-h intravenous infusion of temozolomide was administered. Continuous microdialysis samples were collected from the pons and cortex over 4 h with concurrent serial plasma and CSF samples. Postsurgical verification of microdialysis cannula-probe placement was obtained via MRI in 3 macaques and by gross pathology in all 5 animals. The MRI-determined coordinates and surgical methodologies resulted in accurate microdialysis probe placement in the pons and cortex in 4 of the 5 macaques. Histologic examination from these 4 animals revealed negligible tissue damage to the pontine and cortical tissue from microdialysis. One macaque was maintained for 8 wk and had no deficits attributed to the procedure. This animal model allows for the determination of differences in CNS penetration of chemotherapeutic agents in the pons, cortex, and CSF after systemic drug administration.


Subject(s)
Brain Stem/metabolism , Cerebral Cortex/metabolism , Dacarbazine/analogs & derivatives , Macaca mulatta , Microdialysis/methods , Models, Animal , Animals , Dacarbazine/pharmacokinetics , Magnetic Resonance Imaging , Male , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...