Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Evol Lett ; 6(1): 4-20, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35127134

ABSTRACT

The pace of tree microevolution during Anthropocene warming is largely unknown. We used a retrospective approach to monitor genomic changes in oak trees since the Little Ice Age (LIA). Allelic frequency changes were assessed from whole-genome pooled sequences for four age-structured cohorts of sessile oak (Quercus petraea) dating back to 1680, in each of three different oak forests in France. The genetic covariances of allelic frequency changes increased between successive time periods, highlighting genome-wide effects of linked selection. We found imprints of parallel linked selection in the three forests during the late LIA, and a shift of selection during more recent time periods of the Anthropocene. The changes in allelic covariances within and between forests mirrored the documented changes in the occurrence of extreme events (droughts and frosts) over the last 300 years. The genomic regions with the highest covariances were enriched in genes involved in plant responses to pathogens and abiotic stresses (temperature and drought). These responses are consistent with the reported sequence of frost (or drought) and disease damage ultimately leading to the oak dieback after extreme events. They provide support for adaptive evolution of long-lived species during recent climatic changes. Although we acknowledge that other sources (e.g., gene flow, generation overlap) may have contributed to temporal covariances of allelic frequency changes, the consistent and correlated response across the three forests lends support to the existence of a systematic driving force such as natural selection.

2.
Mol Biol Evol ; 33(7): 1669-78, 2016 07.
Article in English | MEDLINE | ID: mdl-26956888

ABSTRACT

Reproductive traits in plants tend to evolve rapidly due to various causes that include plant-pollinator coevolution and pollen competition, but the genomic basis of reproductive trait evolution is still largely unknown. To characterize evolutionary patterns of genome wide gene expression in reproductive tissues in the gametophyte and to compare them to developmental stages of the sporophyte, we analyzed evolutionary conservation and genetic diversity of protein-coding genes using microarray-based transcriptome data from three plant species, Arabidopsis thaliana, rice (Oryza sativa), and soybean (Glycine max). In all three species a significant shift in gene expression occurs during gametogenesis in which genes of younger evolutionary age and higher genetic diversity contribute significantly more to the transcriptome than in other stages. We refer to this phenomenon as "evolutionary bulge" during plant reproductive development because it differentiates the gametophyte from the sporophyte. We show that multiple, not mutually exclusive, causes may explain the bulge pattern, most prominently reduced tissue complexity of the gametophyte, a varying extent of selection on reproductive traits during gametogenesis as well as differences between male and female tissues. This highlights the importance of plant reproduction for understanding evolutionary forces determining the relationship of genomic and phenotypic variation in plants.


Subject(s)
Gene Expression Profiling/methods , Genome, Plant , Plants/genetics , Arabidopsis/genetics , Biological Evolution , Evolution, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Germ Cells, Plant , Oryza/genetics , Plant Development/genetics , Plant Proteins/genetics , Glycine max/genetics , Transcriptome
3.
New Phytol ; 201(4): 1440-1456, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24320224

ABSTRACT

• Inferring invasion routes and identifying reservoirs of diversity of plant pathogens are essential in proposing new strategies for their control. Magnaporthe oryzae, the fungus responsible for rice blast disease, has invaded all rice growing areas. Virulent genotypes regularly (re)emerge, causing rapid resistance breakdowns. However, the world-wide genetic subdivision of M. oryzae populations on rice and its past history of invasion have never been elucidated. • In order to investigate the centers of diversity, origin and migration of M. oryzae on rice, we analyzed the genetic diversity of 55 populations from 15 countries. • Three genetic clusters were identified world-wide. Asia was the center of diversity and the origin of most migrations to other continents. In Asia, two centers of diversity were revealed in the Himalayan foothills: South China-Laos-North Thailand, and western Nepal. Sexual reproduction persisted only in the South China-Laos-North Thailand region, which was identified as the putative center of origin of all M. oryzae populations on rice. • Our results suggest a scenario of early evolution of M. oryzae on rice that matches the past history of rice domestication. This study confirms that crop domestication may have considerable influence on the pestification process of natural enemies.


Subject(s)
Genetic Variation , Magnaporthe/genetics , Oryza/microbiology , Alleles , Asia, Southeastern , Discriminant Analysis , Geography , Phylogeny , Principal Component Analysis
4.
BMC Evol Biol ; 12: 42, 2012 Mar 29.
Article in English | MEDLINE | ID: mdl-22458778

ABSTRACT

BACKGROUND: Sexual reproduction is common in eukaryotic microorganisms, with few species reproducing exclusively asexually. However, in some organisms, such as fungi, asexual reproduction alternates with episodic sexual reproduction events. Fungi are thus appropriate organisms for studies of the reasons for the selection of sexuality or clonality and of the mechanisms underlying this selection. Magnaporthe oryzae, an Ascomycete causing blast disease on rice, reproduces mostly asexually in natura. Sexual reproduction is possible in vitro and requires (i) two strains of opposite mating types including (ii) at least one female-fertile strain (i.e. a strain able to produce perithecia, the female organs in which meiosis occurs). Female-fertile strains are found only in limited areas of Asia, in which evidence for contemporary recombination has recently been obtained. We induced the forced evolution of four Chinese female-fertile strains in vitro by the weekly transfer of asexual spores (conidia) between Petri dishes. We aimed to determine whether female fertility was rapidly lost in the absence of sexual reproduction and whether this loss was controlled genetically or epigenetically. RESULTS: All the strains became female-sterile after 10 to 19 rounds of selection under asexual conditions. As no single-spore isolation was carried out, the observed decrease in the production of perithecia reflected the emergence and the invasion of female-sterile mutants. The female-sterile phenotype segregated in the offspring of crosses between female-sterile evolved strains and female-fertile wild-type strains. This segregation was maintained in the second generation in backcrosses. Female-sterile evolved strains were subjected to several stresses, but none induced the restoration of female fertility. This loss of fertility was therefore probably due to genetic rather than epigenetic mechanisms. In competition experiments, female-sterile mutants produced similar numbers of viable conidia to wild-type strains, but released them more efficiently. This advantage may account for the invasion of our populations by female-sterile mutants. CONCLUSIONS: We show for the first time that, in the absence of sexual reproduction, female-sterile mutants of M. oryzae rice strains can arise and increase in abundance in asexual generations. This change in phenotype was frequent and probably caused by mutation. These results suggest that female fertility may have been lost rapidly during the dispersion of the fungus from Asia to the rest of the world.


Subject(s)
Biological Evolution , Gene Expression Regulation, Fungal/genetics , Magnaporthe/physiology , Oryza/microbiology , Reproduction, Asexual/genetics , Selection, Genetic , Analysis of Variance , Crosses, Genetic , Fertility/physiology , In Vitro Techniques , Magnaporthe/genetics , Species Specificity
5.
Mol Ecol ; 21(6): 1330-44, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22313491

ABSTRACT

Sexual reproduction may be cryptic or facultative in fungi and therefore difficult to detect. Magnaporthe oryzae, which causes blast, the most damaging fungal disease of rice, is thought to originate from southeast Asia. It reproduces asexually in all rice-growing regions. Sexual reproduction has been suspected in limited areas of southeast Asia, but has never been demonstrated in contemporary populations. We characterized several M. oryzae populations worldwide both biologically and genetically, to identify candidate populations for sexual reproduction. The sexual cycle of M. oryzae requires two strains of opposite mating types, at least one of which is female-fertile, to come into contact. In one Chinese population, the two mating types were found to be present at similar frequencies and almost all strains were female-fertile. Compatible strains from this population completed the sexual cycle in vitro and produced viable progenies. Genotypic richness and linkage disequilibrium data also supported the existence of sexual reproduction in this population. We resampled this population the following year, and the data obtained confirmed the presence of all the biological and genetic characteristics of sexual reproduction. In particular, a considerable genetic reshuffling of alleles was observed between the 2 years. Computer simulations confirmed that the observed genetic characteristics were unlikely to have arisen in the absence of recombination. We therefore concluded that a contemporary population of M. oryzae, pathogenic on rice, reproduces sexually in natura in southeast Asia. Our findings provide evidence for the loss of sexual reproduction by a fungal plant pathogen outside its centre of origin.


Subject(s)
Magnaporthe/genetics , Magnaporthe/physiology , Oryza/microbiology , Plant Diseases/microbiology , Reproduction , Asia , Computer Simulation , Crosses, Genetic , DNA, Fungal/genetics , Genes, Mating Type, Fungal , Genetics, Population , Magnaporthe/growth & development , Recombination, Genetic , Reproduction/genetics , Reproduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...