Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2555: 23-49, 2023.
Article in English | MEDLINE | ID: mdl-36306077

ABSTRACT

The marine ecosystem covers more than 70% of the world's surface, and oceans represent a source of varied types of organisms due to the diversified environment. Consequently, the marine environment is an exceptional depot of novel bioactive natural products, with structural and chemical features generally not found in terrestrial habitats. Here, in particular, microbes represent a vast source of unknown and probably new physiological characteristics. They have evolved during extended evolutionary processes of physiological adaptations under various environmental conditions and selection pressures. However, to date, the biodiversity of marine microbes and the versatility of their bioactive compounds and metabolites have not been fully explored. Thus, metagenomic tools are required to exploit the untapped marine microbial diversity and their bioactive compounds. This chapter focuses on function-based marine metagenomics to screen for bioactive molecules of value for biotechnology. Functional metagenomic strategies are described, including sampling in the marine environment, constructing marine metagenomic large-insert libraries, and examples on function-based screens for quorum quenching and anti-biofilm activities.


Subject(s)
Ecosystem , Metagenomics , Metagenome , Biotechnology , Biodiversity
2.
Plant Signal Behav ; 8(6): e24259, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23603974

ABSTRACT

The involvement of chloride in salt stress symptoms and salt tolerance mechanisms in plants has been less investigated in the past. Therefore, we studied the salt-induced chloride influx in Arabidopsis expressing the GFP-based anion indicator Clomeleon. High salt concentrations induce two phases of chloride influx. The fast kinetic phase is likely caused by membrane depolarization, and is assumed to be mediated by channels. This is followed by a slower "saturation" phase, where chloride is accumulated in the cytoplasm. Both phases of chloride uptake are dependent on the presence of external calcium. In general: with high [Ca (2+)] less chloride is accumulated in the cytoplasm. Surprisingly, also the internal calcium availability has an impact on chloride transport. A complete block of the second phase of chloride influx is achieved by the anion channel blocker A9C and trivalent cations (La (3+), Gd (3+), and Al (3+)). Other channel blockers and diuretics were found to inhibit the process partially. The results suggest that several transporter species are involved here, including electroneutral cation-chloride-cotransporters, and a part of chloride possibly enters the cells through cation channels after salt application.


Subject(s)
Anthracenes/metabolism , Arabidopsis/metabolism , Calcium/metabolism , Chlorides/metabolism , Plant Roots/metabolism , Salinity , Arabidopsis/cytology , Plant Roots/cytology , Recombinant Fusion Proteins/metabolism , Stress, Physiological
3.
Plant Physiol Biochem ; 56: 56-61, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22592001

ABSTRACT

Boron (B) toxicity symptoms are visible in the form of necrotic spots and may worsen the oxidative stress caused by salinity. Hence, the interactive effects of combined salinity and B toxicity stress on antioxidative activities (TAC, LUPO, SOSA, CAT, and GR) were investigated by novel luminescence assays and standard photometric procedures. Wheat plants grown under hydroponic conditions were treated with 2.5 µM H3BO3 (control), 75 mM NaCl, 200 µM H3BO3, or 75 mM NaCl + 200 µM H3BO3, and analysed 6 weeks after germination. Shoot fresh weight (FW), shoot dry weight (DW), and relative water content (RWC) were significantly reduced, whereas the antioxidative activity of all enzymes was increased under salinity compared with the control. High B application led to necrotic leaf spots but did not influence growth parameters. Following NaCl + B treatment, shoot DW, RWC, SOSA, GR, and CAT activities remained the same compared with NaCl alone, whereas the TAC and LUPO activities were increased under the combined stress compared with NaCl alone. However, shoot FW was significantly reduced under NaCl + B compared with NaCl alone, as an additive effect of combined stress. Thus, we found an adjustment of antioxidative enzyme activity to the interactive effects of NaCl and high B. The stress factor "salt" mainly produced more oxidative stress than that of the factor "high B". Furthermore, addition of higher B in the presence of NaCl increases TAC and LUPO demonstrating that increased LUPO activity is an important physiological response in wheat plants against multiple stresses.


Subject(s)
Antioxidants/metabolism , Boron/adverse effects , Oxidative Stress , Peroxidases/metabolism , Plant Leaves/drug effects , Sodium Chloride/adverse effects , Triticum/drug effects , Biomass , Enzymes/metabolism , Germination , Hydroponics , Plant Diseases , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Triticum/growth & development , Triticum/metabolism , Water/metabolism
4.
Nat Protoc ; 5(10): 1627-34, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20885374

ABSTRACT

Aerobic metabolism requires a complex antioxidative system to balance reactive oxygen species (ROS). When in excess, ROS disrupt cellular activities and molecular structures. Owing to the variety of ROS, there are different antioxidative activities that require various tests for their detection. The so-called 'total antioxidative capacity' inhibition assay presented in this paper can be used to quantify the overall activity of low-molecular-weight antioxidants (AOs) in biological samples. The assay is based on enhanced horseradish peroxidase-catalyzed luminol chemiluminescence. It can be fine-tuned so that the biological samples meet the requirements of the light detector. A detailed protocol describing all relevant parameters is provided. The procedure is quick, inexpensive and reproducible. The assay can be used with diverse biological materials such as plant extracts and blood plasma. Hence, it is applicable to fields as diverse as crop breeding, medical diagnostics or food sciences. The time needed for the assay depends on the number of samples and their AO content. The protocol takes one working day to complete when five samples with five replicates are measured sequentially.


Subject(s)
Antioxidants/analysis , Luminescent Measurements/methods , Horseradish Peroxidase , Hydrogen Peroxide/chemistry , Iodobenzenes/chemistry , Luminescence , Luminol/chemistry , Reactive Oxygen Species
5.
Nat Protoc ; 5(10): 1635-41, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20885375

ABSTRACT

In all living cells, levels of reactive oxygen species are kept in check by antioxidative activities. Superoxide radicals are dismutated by superoxide dismutases, by other enzymes and by nonenzymatic compounds. This protocol describes the quantification of superoxide scavenging activities (SOSA). It is based on the inhibition of chemiluminescence emitted by coelenterazine when oxidized by superoxide. SOSA is a summary parameter comprising all high-molecular-weight superoxide scavengers in a biological sample. Enzymes and nonenzymatic scavengers can also be distinguished. The SOSA assay is quick, reproducible and applicable to fields as diverse as medical diagnostics, food sciences, or agriculture. The protocol presented here requires about 2 working days to complete.


Subject(s)
Biological Assay , Free Radical Scavengers/analysis , Imidazoles/chemistry , Luminescent Measurements/methods , Pyrazines/chemistry , Antioxidants/analysis , Antioxidants/chemistry , Free Radical Scavengers/chemistry , Luminescence , Oxidation-Reduction , Reactive Oxygen Species/chemistry , Superoxide Dismutase/chemistry , Superoxides/chemistry
6.
Plant Methods ; 5: 2, 2009 Jan 26.
Article in English | MEDLINE | ID: mdl-19171044

ABSTRACT

BACKGROUND: A plethora of concurrent cellular activities is mobilised in the adaptation of plants to adverse environmental conditions. This response can be quantified by physiological experiments or metabolic profiling. The intention of this work is to reduce the number of metabolic processes studied to a minimum of relevant parameters with a maximum yield of information. Therefore, we inspected 'summary parameters' characteristic for whole classes of antioxidative metabolites and key enzymes. RESULTS: Three bioluminescence assays are presented. A horseradish peroxidase-based total antioxidative capacity (TAC) assay is used to probe low molecular weight antioxidants. Peroxidases are quantified by their luminol converting activity (LUPO). Finally, we quantify high molecular weight superoxide anion scavenging activity (SOSA) using coelenterazine.Experiments with Lepidium sativum L. show how salt, drought, cold, and heat influence the antioxidative system represented here by TAC, LUPO, SOSA, catalase, and glutathione reductase (GR). LUPO and SOSA run anti-parallel under all investigated stress conditions suggesting shifts in antioxidative functions rather than formation of antioxidative power. TAC runs in parallel with GR. This indicates that a majority of low molecular weight antioxidants in plants is represented by glutathione. CONCLUSION: The set of assays presented here is capable of characterising antioxidative activities in plants. It is inexpensive, quick and reproducible and delivers quantitative data. 'Summary parameters' like TAC, LUPO, and SOSA are quantitative traits which may be promising for implementation in high-throughput screening for robustness of novel mutants, transgenics, or breeds.

SELECTION OF CITATIONS
SEARCH DETAIL
...