Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 20: 137-163, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35663339

ABSTRACT

Natural bone constitutes a complex and organized structure of organic and inorganic components with limited ability to regenerate and restore injured tissues, especially in large bone defects. To improve the reconstruction of the damaged bones, tissue engineering has been introduced as a promising alternative approach to the conventional therapeutic methods including surgical interventions using allograft and autograft implants. Bioengineered composite scaffolds consisting of multifunctional biomaterials in combination with the cells and bioactive therapeutic agents have great promise for bone repair and regeneration. Cellulose and its derivatives are renewable and biodegradable natural polymers that have shown promising potential in bone tissue engineering applications. Cellulose-based scaffolds possess numerous advantages attributed to their excellent properties of non-toxicity, biocompatibility, biodegradability, availability through renewable resources, and the low cost of preparation and processing. Furthermore, cellulose and its derivatives have been extensively used for delivering growth factors and antibiotics directly to the site of the impaired bone tissue to promote tissue repair. This review focuses on the various classifications of cellulose-based composite scaffolds utilized in localized bone drug delivery systems and bone regeneration, including cellulose-organic composites, cellulose-inorganic composites, cellulose-organic/inorganic composites. We will also highlight the physicochemical, mechanical, and biological properties of the different cellulose-based scaffolds for bone tissue engineering applications.

2.
Biomater Adv ; 137: 212840, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35929269

ABSTRACT

There is a long history behind applying biological macromolecules like Aloe vera (AV) in regenerative medicine; endowed with anti-inflammatory and antimicrobial activities besides improving immune activity, AV has always been of particular interest to regenerate/reconstruct injuries and burns. In the present study, aligned electrospun polycaprolactone (PCL)-silk fibroin (SF) fibers containing different percentages of AV (0, 2.5, 5, and 7.5%wt) were fabricated for stromal regeneration. The results illustrated that a uniform bead-free structure was obtained, and the AV incorporation decreased the mean fiber diameter from 552 down to 182 nm and led to more alignment in the fibers. The Young's modulus raised from 4.96 to 5.26 MPa by higher amount of AV up to 5%wt. It is noteworthy that both the fiber alignment and AV affected the scaffolds' transparency and water uptake to increase. The human stromal keratocyte cells (hSKC)s culture revealed that the addition of AV and morphological properties of scaffolds encouraged cell adhesion and proliferation. The mRNA expression level for keratocan and ALDH3A1 and immunocytochemistry F-actin revealed the positive effect of AV on hSKCs differentiation. Our study indicated the promising potential of AV as a biological macromolecule for stromal tissue regeneration.


Subject(s)
Aloe , Fibroins , Aloe/chemistry , Cell Proliferation , Fibroins/pharmacology , Humans , Polyesters , Tissue Engineering/methods , Tissue Scaffolds/chemistry
3.
Mater Sci Eng C Mater Biol Appl ; 127: 112242, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34225882

ABSTRACT

Electrospun porous bone scaffolds are known to imitate the extracellular matrix very well and provide an environment through which the tissue formation is enhanced. Although polymeric scaffolds have a great potential in bone tissue regeneration, their weak bioactivity (bone bonding ability) and mechanical properties have left room for improvement. Therefore, the present study focused on the developing a ternary multifunctional platform composed of polycaprolactone (PCL)/silk fibroin (SF)/Zn-substituted Mg2SiO4 nanoparticles for bone tissue regeneration. This study is composed of two connected sections including synthesis and characterization of Mg(2-x)ZnxSiO4, x = 0, 0.5, 1, 1.5, 2 through surfactant-assisted sol-gel technique followed by incorporation of the nanoparticles into PCL/SF hybrid scaffold via electrospinning technique. The weight ratios of polymers and ceramic nanoparticles were optimized to reach desirable textural-porosity, pore size, and fiber diameter-and mechanical properties. Having optimized the ternary scaffold, it was then undergone different physical, chemical, and biological tests in vitro. A precise comparison study between the ternary (PCL/SF/ceramic nanoparticles), binary (PCL/SF), and pure PCL was made to shed light on the effect of each composition on the applicability of ternary scaffold. The overall results confirmed that the Mg1Zn1SiO4 nanoparticles-incorporated PCL/SF scaffold with fluorescence property was the one yielding the highest Young's modulus and desirable textural properties. The ternary scaffold showed improved biological properties making it a promising candidate for further studies towards bone tissue regeneration.


Subject(s)
Fibroins , Nanoparticles , Bone Regeneration , Polyesters , Tissue Engineering , Tissue Scaffolds , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...