Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(22): 29291-29304, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38776211

ABSTRACT

In this study, we utilized in situ nanofibrillation of thermoplastic polyester ether elastomer (TPEE) within a high-density polyethylene (HDPE) matrix to enhance the rheological properties, foamability, and mechanical characteristics of the HDPE nanocomposite at both room and subzero temperatures. Due to the inherent polarity differences between these two components, TPEE is thermodynamically incompatible with the nonpolar HDPE. To address this compatibility issue, we employed a compatibilizer, styrene/ethylene-butylene/styrene copolymer-grafted maleic anhydride (SEBS-g-MA), to reduce the interfacial tension between the two blend components. In the initial step, we prepared a 10% masterbatch of HDPE/TPEE with and without the compatibilizer using a twin-screw extruder. Subsequently, we processed the 10% masterbatch further through spun bonding to create fiber-in-fiber composites. Scanning electron microscopy (SEM) analysis revealed a significant reduction in the spherical size of HDPE/TPEE particles following the inclusion of SEBS-g-MA, as well as a much smaller TPEE nanofiber size (approximately 60-70 nm for 5% TPEE). Moreover, extensional rheological testing revealed a notable enhancement in extensional rheological properties, with strain-hardening behavior being more pronounced in the compatibilized nanofibrillar composites compared to the noncompatibilized ones. SEM images of the foam structures depicted substantial improvement in the foamability of HDPE in terms of the cell size and density following the nanofibrillation process and the use of the compatibilizer. Ultimately, the in situ rubber fibrillation and enhancement of HDPE and TPEE interface using a compatibilizer led to increasing the HDPE ductility at room and subzero temperatures while maintaining its stiffness.

2.
Small ; 20(21): e2308320, 2024 May.
Article in English | MEDLINE | ID: mdl-38105422

ABSTRACT

The urgent need for the development of micro-thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm-thick MXene films, gaseous transformations of oxygen-containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat-treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high-performance, non-metallic EMI shielding materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...