Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 10(8)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37627835

ABSTRACT

In this study, we use LSTM (Long-Short-Term-Memory) networks to evaluate Magnetic Resonance Imaging (MRI) data to overcome the shortcomings of conventional Alzheimer's disease (AD) detection techniques. Our method offers greater reliability and accuracy in predicting the possibility of AD, in contrast to cognitive testing and brain structure analyses. We used an MRI dataset that we downloaded from the Kaggle source to train our LSTM network. Utilizing the temporal memory characteristics of LSTMs, the network was created to efficiently capture and evaluate the sequential patterns inherent in MRI scans. Our model scored a remarkable AUC of 0.97 and an accuracy of 98.62%. During the training process, we used Stratified Shuffle-Split Cross Validation to make sure that our findings were reliable and generalizable. Our study adds significantly to the body of knowledge by demonstrating the potential of LSTM networks in the specific field of AD prediction and extending the variety of methods investigated for image classification in AD research. We have also designed a user-friendly Web-based application to help with the accessibility of our developed model, bridging the gap between research and actual deployment.

2.
Contrast Media Mol Imaging ; 2022: 3224939, 2022.
Article in English | MEDLINE | ID: mdl-35542758

ABSTRACT

The disorder of Alzheimer's (AD) is defined as a gradual deterioration of cognitive functions, such as the failure of spatial cognition and short-term memory. Besides difficulties in memory, a person with this disease encounters visual processing difficulties and even awareness and identifying of their beloved ones. Nowadays, recent technologies made this possible to connect everything that exists around us on Earth through the Internet, this is what the Internet of Things (IoT) made possible which can capture and save a massive amount of data that are considered very important and useful information which then can be valuable in training of the various state-of-the-art machine and deep learning algorithms. Assistive mobile health applications and IoT-based wearable devices are helping and supporting the ongoing health screening of a patient with AD. In the early stages of AD, the wearable devices and IoT approach aim to keep AD patients mentally active in all of life's daily activities, independent from their caregivers or any family member of the patient. These technological solutions have great potential in improving the quality of life of an AD patient as this helps to reduce pressure on healthcare and to minimize the operational cost. The purpose of this study is to explore the State-of-the-Art wearable technologies for people with AD. Significance, challenges, and limitations that arise and what will be the future of these technological solutions and their acceptance. Therefore, this study also provides the challenges and gaps in the current literature review and future directions for other researchers working in the area of developing wearable devices.


Subject(s)
Alzheimer Disease , Internet of Things , Wearable Electronic Devices , Alzheimer Disease/diagnosis , Delivery of Health Care , Humans , Quality of Life
SELECTION OF CITATIONS
SEARCH DETAIL
...