Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1488: 1-9, 2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28168978

ABSTRACT

We present for the first time the application of metal-organic framework (MOF) mixed-matrix disks (MMD) for the automated flow-through solid-phase extraction (SPE) of environmental pollutants. Zirconium terephthalate UiO-66 and UiO-66-NH2 MOFs with different size (90, 200 and 300nm) have been incorporated into mechanically stable polyvinylidene difluoride (PVDF) disks. The performance of the MOF-MMDs for automated SPE of seven substituted phenols prior to HPLC analysis has been evaluated using the sequential injection analysis technique. MOF-MMDs enabled the simultaneous extraction of phenols with the concomitant size exclusion of molecules of larger size. The best extraction performance was obtained using a MOF-MMD containing 90nm UiO-66-NH2 crystals. Using the selected MOF-MMD, detection limits ranging from 0.1 to 0.2µgL-1 were obtained. Relative standard deviations ranged from 3.9 to 5.3% intra-day, and 4.7-5.7% inter-day. Membrane batch-to-batch reproducibility was from 5.2 to 6.4%. Three different groundwater samples were analyzed with the proposed method using MOF-MMDs, obtaining recoveries ranging from 90 to 98% for all tested analytes.


Subject(s)
Chromatography, High Pressure Liquid/methods , Metals/chemistry , Solid Phase Extraction/methods , Automation , Groundwater/chemistry , Limit of Detection , Microscopy, Electron, Scanning , Phenols/isolation & purification , Polyvinyls/chemistry , Reference Standards , Reproducibility of Results , Rhodamines/isolation & purification , Solvents , X-Ray Diffraction
2.
ACS Appl Mater Interfaces ; 9(2): 1728-1736, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27966854

ABSTRACT

A two-step nanoparticle-directed route for the preparation of macroporous polymer monoliths for which the pore surface is covered with a metal-organic framework (MOF) coating has been developed to facilitate the use of MOFs in flow-based applications. The flow-through monolithic matrix was prepared in a column format from a polymerization mixture containing ZnO-nanoparticles. These nanoparticles embedded in the precursor monolith were converted to MOF coatings via the dissolution-precipitation equilibrium after filling the pores of the monolith with a solution of the organic linker. Pore surface coverage with the microporous zeolitic imidazolate framework ZIF-8 resulted in an increase in surface area from 72 to 273 m2 g-1. Monolithic polymer containing ZIF-8 coating was implemented as a microreactor catalyzing the Knoevenagel condensation reaction and also in extraction column format enabling the preconcentration of trace levels of toxic chlorophenols in environmental waters. Our approach can be readily adapted to other polymers and MOFs thus enabling development of systems for flow-based MOF applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...