Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 66(2): 311-318, 2019 02.
Article in English | MEDLINE | ID: mdl-29993498

ABSTRACT

OBJECTIVE: The purpose of this paper is to demonstrate that a new algorithm for estimating arterial oxygen saturation can be effective even with data corrupted by motion artifacts (MAs). METHODS: OxiMA, an algorithm based on the time-frequency components of a photoplethysmogram (PPG), was evaluated using 22-min datasets recorded from 10 subjects during voluntarily-induced hypoxia, with and without subject-induced MAs. A Nellcor OxiMax transmission sensor was used to collect an analog PPG while reference oxygen saturation and pulse rate (PR) were collected simultaneously from an FDA-approved Masimo SET Radical RDS-1 pulse oximeter. RESULTS: The performance of our approach was determined by computing the mean relative error between the PR/oxygen saturation estimated by OxiMA and the reference Masimo oximeter. The average estimation error using OxiMA was 3 beats/min for PR and 3.24% for oxygen saturation, respectively. CONCLUSION: The results show that OxiMA has great potential for improving the accuracy of PR and oxygen saturation estimation during MAs. SIGNIFICANCE: This is the first study to demonstrate the feasibility of a reconstruction algorithm to improve oxygen saturation estimates on a dataset with MAs and concomitant hypoxia.


Subject(s)
Algorithms , Heart Rate/physiology , Oximetry/methods , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Adult , Artifacts , Female , Humans , Hypoxia/diagnosis , Male , Middle Aged , Oxygen/blood , Young Adult
2.
IEEE J Biomed Health Inform ; 21(5): 1242-1253, 2017 09.
Article in English | MEDLINE | ID: mdl-28113791

ABSTRACT

Motion and noise artifacts (MNAs) impose limits on the usability of the photoplethysmogram (PPG), particularly in the context of ambulatory monitoring. MNAs can distort PPG, causing erroneous estimation of physiological parameters such as heart rate (HR) and arterial oxygen saturation (SpO2). In this study, we present a novel approach, "TifMA," based on using the time-frequency spectrum of PPG to first detect the MNA-corrupted data and next discard the nonusable part of the corrupted data. The term "nonusable" refers to segments of PPG data from which the HR signal cannot be recovered accurately. Two sequential classification procedures were included in the TifMA algorithm. The first classifier distinguishes between MNA-corrupted and MNA-free PPG data. Once a segment of data is deemed MNA-corrupted, the next classifier determines whether the HR can be recovered from the corrupted segment or not. A support vector machine (SVM) classifier was used to build a decision boundary for the first classification task using data segments from a training dataset. Features from time-frequency spectra of PPG were extracted to build the detection model. Five datasets were considered for evaluating TifMA performance: (1) and (2) were laboratory-controlled PPG recordings from forehead and finger pulse oximeter sensors with subjects making random movements, (3) and (4) were actual patient PPG recordings from UMass Memorial Medical Center with random free movements and (5) was a laboratory-controlled PPG recording dataset measured at the forehead while the subjects ran on a treadmill. The first dataset was used to analyze the noise sensitivity of the algorithm. Datasets 2-4 were used to evaluate the MNA detection phase of the algorithm. The results from the first phase of the algorithm (MNA detection) were compared to results from three existing MNA detection algorithms: the Hjorth, kurtosis-Shannon entropy, and time-domain variability-SVM approaches. This last is an approach recently developed in our laboratory. The proposed TifMA algorithm consistently provided higher detection rates than the other three methods, with accuracies greater than 95% for all data. Moreover, our algorithm was able to pinpoint the start and end times of the MNA with an error of less than 1 s in duration, whereas the next-best algorithm had a detection error of more than 2.2 s. The final, most challenging, dataset was collected to verify the performance of the algorithm in discriminating between corrupted data that were usable for accurate HR estimations and data that were nonusable. It was found that on average 48% of the data segments were found to have MNA, and of these, 38% could be used to provide reliable HR estimation.


Subject(s)
Algorithms , Heart Rate/physiology , Photoplethysmography/methods , Signal Processing, Computer-Assisted , Adult , Artifacts , Female , Humans , Male , Middle Aged , Movement/physiology , Young Adult
3.
Ann Biomed Eng ; 42(11): 2238-50, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25092422

ABSTRACT

Motion and noise artifacts (MNA) are a serious obstacle in utilizing photoplethysmogram (PPG) signals for real-time monitoring of vital signs. We present a MNA detection method which can provide a clean vs. corrupted decision on each successive PPG segment. For motion artifact detection, we compute four time-domain parameters: (1) standard deviation of peak-to-peak intervals (2) standard deviation of peak-to-peak amplitudes (3) standard deviation of systolic and diastolic interval ratios, and (4) mean standard deviation of pulse shape. We have adopted a support vector machine (SVM) which takes these parameters from clean and corrupted PPG signals and builds a decision boundary to classify them. We apply several distinct features of the PPG data to enhance classification performance. The algorithm we developed was verified on PPG data segments recorded by simulation, laboratory-controlled and walking/stair-climbing experiments, respectively, and we compared several well-established MNA detection methods to our proposed algorithm. All compared detection algorithms were evaluated in terms of motion artifact detection accuracy, heart rate (HR) error, and oxygen saturation (SpO2) error. For laboratory controlled finger, forehead recorded PPG data and daily-activity movement data, our proposed algorithm gives 94.4, 93.4, and 93.7% accuracies, respectively. Significant reductions in HR and SpO2 errors (2.3 bpm and 2.7%) were noted when the artifacts that were identified by SVM-MNA were removed from the original signal than without (17.3 bpm and 5.4%). The accuracy and error values of our proposed method were significantly higher and lower, respectively, than all other detection methods. Another advantage of our method is its ability to provide highly accurate onset and offset detection times of MNAs. This capability is important for an automated approach to signal reconstruction of only those data points that need to be reconstructed, which is the subject of the companion paper to this article. Finally, our MNA detection algorithm is real-time realizable as the computational speed on the 7-s PPG data segment was found to be only 7 ms with a Matlab code.


Subject(s)
Algorithms , Artifacts , Monitoring, Physiologic , Heart Rate , Humans , Motion , Oximetry , Photoplethysmography
4.
Ann Biomed Eng ; 42(11): 2251-63, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24823655

ABSTRACT

We introduce a new method to reconstruct motion and noise artifact (MNA) contaminated photoplethysmogram (PPG) data. A method to detect MNA corrupted data is provided in a companion paper. Our reconstruction algorithm is based on an iterative motion artifact removal (IMAR) approach, which utilizes the singular spectral analysis algorithm to remove MNA artifacts so that the most accurate estimates of uncorrupted heart rates (HRs) and arterial oxygen saturation (SpO2) values recorded by a pulse oximeter can be derived. Using both computer simulations and three different experimental data sets, we show that the proposed IMAR approach can reliably reconstruct MNA corrupted data segments, as the estimated HR and SpO2 values do not significantly deviate from the uncorrupted reference measurements. Comparison of the accuracy of reconstruction of the MNA corrupted data segments between our IMAR approach and the time-domain independent component analysis (TD-ICA) is made for all data sets as the latter method has been shown to provide good performance. For simulated data, there were no significant differences in the reconstructed HR and SpO2 values starting from 10 dB down to -15 dB for both white and colored noise contaminated PPG data using IMAR; for TD-ICA, significant differences were observed starting at 10 dB. Two experimental PPG data sets were created with contrived MNA by having subjects perform random forehead and rapid side-to-side finger movements show that; the performance of the IMAR approach on these data sets was quite accurate as non-significant differences in the reconstructed HR and SpO2 were found compared to non-contaminated reference values, in most subjects. In comparison, the accuracy of the TD-ICA was poor as there were significant differences in reconstructed HR and SpO2 values in most subjects. For non-contrived MNA corrupted PPG data, which were collected with subjects performing walking and stair climbing tasks, the IMAR significantly outperformed TD-ICA as the former method provided HR and SpO2 values that were non-significantly different than MNA free reference values.


Subject(s)
Artifacts , Signal Processing, Computer-Assisted , Heart Rate , Humans , Motion , Oximetry , Photoplethysmography
SELECTION OF CITATIONS
SEARCH DETAIL
...