Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 13(2): 3707, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22402386

ABSTRACT

The purpose of this work was to determine the dosimetric benefit to normal tissues by tracking the multi-leaf collimator (MLC) apertures with the photon jaws in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform. Radiation treatment plans for ten thoracic, three pediatric, and three head and neck cancer patients were converted to plans with the jaws tracking each segment's MLC apertures, and compared to the original plans in a commercial radiation treatment planning system (TPS). The change in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 (volumes receiving 5, 10 and 20 Gy, respectively) in the cumulative dose-volume histogram for the following structures: total lung minus gross target volume, heart, esophagus, spinal cord, liver, parotids, and brainstem. To validate the accuracy of our beam model, MLC transmission was measured and compared to that predicted by the TPS. The greatest changes between the original and new plans occurred at lower dose levels. In all patients, the reduction in V20 was never more than 6.3% and was typically less than 1%; the maximum reduction in V5 was 16.7% and was typically less than 3%. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1% and, thus, uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. We conclude that the amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT is probably not clinically significant.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Jaw/radiation effects , Radiometry , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Thoracic Neoplasms/radiotherapy , Child , Dose-Response Relationship, Radiation , Humans , Jaw/physiology , Radiotherapy Dosage , Retrospective Studies
2.
Surg Neurol ; 71(1): 126-8; discussion 128-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19084685

ABSTRACT

BACKGROUND: While watertight closure of the dura is a long-standing tenet of cranial surgery, it is often not possible and sometimes unnecessary. Many graft materials with various attributes and drawbacks have been in use for many years. A novel synthetic dural graft material called GORE PRECLUDE MVP dura substitute (WL Gore & Associates, Inc, Flagstaff, Ariz) (henceforth called "MVP") is designed for use both in traditional watertight dural closure and as a dural "underlay" graft in a nonwatertight fashion. One surface of MVP is engineered to facilitate fibroblast in-growth so that its proximity to the underside of the dura will lead to rapid incorporation, whereas the other surface acts as a barrier to reduce tissue adhesion to the device. METHODS: A series of 59 human subjects undergoing craniotomy and available for clinical and radiographic follow-up underwent nonwatertight underlay grafting of their durotomy with MVP. This is an assessment of the specific product and technique. No attempt is made to compare this to other products or techniques. RESULTS: The mean follow-up in this group was more than 4 months. All subjects have ultimately experienced excellent outcomes related to use of the graft implanted with the underlay technique. No complications occurred related directly to MVP, but the wound-related complication rate attributed to the underlay technique was higher than expected (17%). However, careful analysis found a high rate of risk factors for wound complications and determined that complications with the underlay technique could be avoided by assuring close approximation of the graft material to the underside of the dura. CONCLUSIONS: MVP can be used as an underlay graft in a nonwatertight fashion. However, if used over large voids (relaxed brain or large tumor bed), "tacking" or traditional watertight closure techniques should be used. The underlay application of MVP is best applied over the convexities and is particularly well-suited to duraplasty after hemicraniectomy.


Subject(s)
Craniotomy/methods , Dura Mater/surgery , Surgical Mesh , Adolescent , Adult , Aged , Female , Follow-Up Studies , Humans , Male , Middle Aged , Risk Factors , Skull Base/surgery , Surgical Mesh/adverse effects , Surgical Wound Infection/epidemiology , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...