Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Article in English | MEDLINE | ID: mdl-38837069

ABSTRACT

This study aimed to address the challenges of treating advanced stages of colon cancer (CRC) by exploring potential therapeutic options. The research focused on the genetic aspects of CRC, specifically the mutation rate of the KRAS gene, along with other genes like TTN, APC, MUC16, and TP53, using the TCGA dataset. Additionally, the study investigated the efficacy of Oleuropein, a polyphenolic compound found in olives, in combating CRC by using iron oxide nanoparticles coated with glucose and conjugated with Oleuropein. The study characterized the physicochemical properties of the nanoparticles, and the cytotoxic effects of the nanoparticles were evaluated on CRC and normal fibroblast cell lines, demonstrating significantly higher cytotoxicity against CRC cells compared to normal cells. Furthermore, the study analyzed gene expression changes using the GSE124627 dataset to understand the influence of KRAS alterations. It identified numerous upregulated and downregulated genes in KRAS-overexpressing samples, suggesting their involvement in critical cancer-related pathways. These findings suggest that KRAS-influenced genes could serve as potential therapeutic targets for CRC treatment. The study also examined the expression levels of identified genes in CRC samples compared to normal samples. Among the upregulated genes, 22 showed significant increases in cancer samples, while 14 downregulated genes exhibited decreased expression in both KRAS-influenced and cancer samples. Cox regression analysis identified specific upregulated genes, including ANKZF1, SNAI1, PPFIA4, SIX4, and NOTUM, associated with poor prognosis. Kaplan-Meier analysis further confirmed the correlation between increased expression of these genes and higher patient mortality rates. In conclusion, this study provided valuable insights into the genetic aspects of CRC and potential therapeutic strategies. The use of Oleuropein-conjugated iron oxide nanoparticles showed promising cytotoxic effects on colon cancer cells. These findings contribute to advancing our understanding of CRC and offer potential targets for further investigation and the development of novel therapeutic approaches.

2.
Sci Rep ; 14(1): 10284, 2024 05 04.
Article in English | MEDLINE | ID: mdl-38704421

ABSTRACT

The use of magnetic metal nanoparticles has been considered in cancer treatment studies. In this study, BiFe2O4@Ag nanoparticles were synthesized biologically by Scenedesmus obliquus for the first time and their anticancer mechanism in a gastric cancer cell line was characterized. The physicochemical properties of the nanoparticles were evaluated by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic Light Scattering (DLS), and zeta potential analyses. Cell viability and nuclear damage were investigated by the MTT and Hoechst staining assays, respectively. Flow cytometry analysis was performed to determine the frequency of the necrotic and apoptotic cells as well as cell cycle analysis of the nanoparticles-treated cells. Physicochemical characterization showed that the synthesized particles were spherical, without impurities, in a size range of 38-83 nm, with DLS size and zeta potential of 295.7 nm and -27.7 mV, respectively. BiFe2O4@Ag nanoparticles were considerably more toxic for the gastric cancer cells (AGS cell line) than HEK293 normal cells with IC50 of 67 and 117 µg/ml, respectively. Treatment of AGS cells with the nanoparticles led to a remarkable increase in the percentage of late apoptosis (38.5 folds) and cell necrosis (13.4 folds) and caused cell cycle arrest, mainly at the S phase. Also, nuclear fragmentation and apoptotic bodies were observed in the gastric cancer cells treated with the nanoparticles. This study represents BiFe2O4@Ag as a novel anticancer candidate against gastric cancer that can induce cell apoptosis through DNA damage and inhibition of cell cycle progression.


Subject(s)
Apoptosis , Metal Nanoparticles , Scenedesmus , Silver , Stomach Neoplasms , Humans , Apoptosis/drug effects , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Cell Line, Tumor , Metal Nanoparticles/chemistry , Scenedesmus/drug effects , Silver/chemistry , Silver/pharmacology , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , HEK293 Cells , X-Ray Diffraction
3.
Int Immunopharmacol ; 134: 112230, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38744171

ABSTRACT

Accelerating wound healing, as well as preventing infection and scar formation are among the most important medical challenges. This study aims to examine the antimicrobial, immunomodulatory, and anticancer properties of Morus nigra. The antimicrobial activities of ripe and unripe M. nigra fruit (MNF) extracts were tested. HPLC was employed to measure the components in the extract. Oserin ointment was made with 8 % extract. To test the ointment, 48 Wistar rats were randomly assigned into eight groups. The ointment was used daily by treating the wounds. Tissue histology and wound healing were assessed over nine days. Comparative evaluation of wound healing was conducted by analyzing TGF-ß, TNF-α, and IL-1 mRNA levels. Finally, cytotoxic effects on AGS cancer and NIH-3 T3 fibroblast cells were examined. The ANOVA test and Prsim program were used for statistical analysis. Unripe MNF extract had good antimicrobial properties in standard and nosocomial strains. The most abundant compound in the extract was ascorbic acid (0.0441 mg/10 mg extract), followed by naringenin and gallic acid. In all groups treated with MNF extract ointment, a significant reduction in wound area was observed compared to other groups (p < 0.05). After six days of treatment, the microbial load was uncountable. In the microscopic studies of the wounds, a significant increase was observed in fibroblasts, angiogenesis, and in neutrophils in the first days as well as a decrease in the final days. The treatment caused a significant decline in the expression of IL-1 and TNF-α genes, as well as an increase in the expression of TGF-ß (p < 0.05). This extract had no significant cytotoxic effects on human fibroblast cells (p > 0.05). In general, it can be concluded that the unripe MNF extract ointment can be a suitable option for the treatment of infectious and non-infectious skin wounds.


Subject(s)
Fruit , Morus , Ointments , Plant Extracts , Rats, Wistar , Wound Healing , Animals , Wound Healing/drug effects , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Fruit/chemistry , Mice , Humans , Rats , NIH 3T3 Cells , Morus/chemistry , Male , Skin/drug effects , Skin/pathology , Fibroblasts/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Cell Line, Tumor
4.
Article in English | MEDLINE | ID: mdl-38563880

ABSTRACT

In recent years, the increase in cancer morbidity and mortality has presented scientists with a major challenge in developing new therapeutic agents against cancer cells. This study aims to characterize the anticancer effects of copper oxide nanoparticles (NPs) conjugated with Lapatinib (CuO@Lapatinib) on breast and lung cancer cell lines. The physicochemical properties of the NPs were characterized by fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning and transmission electron microscopy, energy dispersive X-ray spectroscopy (EDS), dynamic light scattering (DLS), and zeta potential analyses. The antiproliferative potential of the NPs in the breast (MDA-MB-231) and lung (A549) cancer cell lines and a normal cell line (MRC5) was investigated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay. Flow cytometry and Hoechst staining were used to evaluate cell apoptosis and cell cycle analysis. The reactive oxygen species (ROS) levels in the treated and control cells were also determined. The NPs were spherical, with a size range of 20-59nm, a DLS size of 338nm, and a zeta potential of -42.9 mV. The half maximal inhibitory concentration (IC50) of CuO@Lapatinib NPs for the normal, breast cancer, and lung cancer cell lines was 105, 98, and 87 µg/ml, respectively. Treatment with CuO@Lapatinib NPs caused considerable apoptosis induction in breast cancer (from 0.65% to 68.96%) and lung cancer cell lines (from 1.11% to 44.11%). Also, an increased level of cell cycle arrest at the S phase was observed in both cancer cell lines. The ROS level in the breast and lung cancer cell lines after treatment with CuO@Lapatinib NPs increased by 3.45 and 21.04 folds, respectively. Nuclear morphological alterations, including chromatin condensation and fragmentation, were observed in both cancer cell lines. This study indicates CuO@Lapatinib is a potent antiproliferative compound with more efficient inhibitory effects on lung cancer than breast cancer cells, which can be related to the higher ROS generation in the A549 cell line.

5.
BMC Chem ; 18(1): 33, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360669

ABSTRACT

Magnetic nanoparticles can be considered a reliable tool for targeted drug delivery to cancer tissues. Based on this, in this study, the anticancer effect of iron oxide nanoparticles coated with glucose and conjugated with Safranal (Fe3O4@Glu-Safranal NPs) on a liver cancer cell line (HepG2) was investigated. Physicochemical properties of nanoparticles were characterized using FT-IR, XRD, VSM, EDS-mapping, SEM and TEM imaging, zeta potential, and DLS analyses. MTT test was used to investigate the inhibitory effect of nanoparticles on cancer and normal cell lines. Also, the reactive oxygen species (ROS) level, the population of apoptotic cells, and cell cycle analysis were evaluated in control and nanoparticle-treated cells. The synthesized particles were spherical, in a size range of 17-49 nm, without impurities, with a surface charge of - 13 mV and hydrodynamic size of 129 nm, and with magnetic saturation of 22.5 emu/g. The 50% inhibitory concentration (IC50) of Safranal, Fe3O4, Fe3O4@Glu-Safranal and Cisplatin drug on liver cancer cells were 474, 1546, 305 and 135 µg/mL, respectively. While, the IC50 of Fe3O4@Glu-Safranal for normal cell line was 680 µg/mL. Treating liver cancer cells with nanoparticles significantly increased the population of apoptotic cells from 2.5% to 34.7%. Furthermore, the population of the cells arrested at the G2/M phase increased in nanoparticle-treated cells. Due to the biocompatibility of the constituent compounds of these nanoparticles, their magnetic properties, and their inhibitory effects on cancer cells, Fe3O4@Glu-Safranal NPs can be further considered as a promising anticancer compound.

6.
Sci Rep ; 14(1): 3809, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360831

ABSTRACT

The high mortality rate of colon cancer indicates the insufficient efficacy of current chemotherapy. Thus, the discussion on engineered metal nanoparticles in the treatment of the disease has been considered. In this study, silver nanoparticles were functionalized with glutamine and conjugated with thiosemiccarbazide. Then, anticancer mechanism of Ag@Gln-TSC NPs in a colon cancer cell line (SW480) was investigated. Characterizing Ag@Gln-TSC NPs by FT-IR, XRD, EDS-mapping, DLS, zeta potential, and SEM and TEM microscopy revealed that the Ag@Gln-TSC NPs were correctly synthesized, the particles were spherical, with surface charge of - 27.3 mV, high thermal stability and low agglomeration level. Using MTT assay we found that Ag@Gln-TSC NPs were significantly more toxic for colon cancer cells than normal fibroblast cells with IC50 of 88 and 186 µg/mL, respectively. Flow cytometry analysis showed that treating colon cancer cells with Ag@Gln-TSC NPs leads to a considerable increase in the frequency of apoptotic cells (85.9% of the cells) and increased cell cycle arrest at the S phase. Also, several apoptotic features, including hyperactivity of caspase-3 (5.15 folds), increased expression of CASP8 gene (3.8 folds), and apoptotic nuclear alterations were noticed in the nanoparticle treated cells. Furthermore, treating colon cancer cells with Ag@Gln-TSC NPs caused significant down-regulation of the HULC Lnc-RNA and PPFIA4 oncogene by 0.3 and 0.6 folds, respectively. Overall, this work showed that Ag@Gln-TSC NPs can effectively inhibit colon cancer cells through the activation of apoptotic pathways, a feature that can be considered more in studies in the field of colon cancer treatment.


Subject(s)
Colonic Neoplasms , Metal Nanoparticles , Semicarbazides , Humans , Silver/pharmacology , Glutamine , Spectroscopy, Fourier Transform Infrared , Apoptosis , Colonic Neoplasms/drug therapy , Cell Line, Tumor
7.
Heliyon ; 10(1): e23419, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38173472

ABSTRACT

The use of nanotechnology products with supermagnetic properties for targeted delivery of drugs has gained attention recently. Due to the anticancer features of Gingerol, the major phenolic compound from Ginger, this study aims to prepare Fe3O4@Glucose-Gingerol nanoparticles (NPs) and investigate their anticancer potential in a lung adenocarcinoma cell line. The physical and chemical features of the nanoparticles were investigated by FT-IR, XRD, zeta potential, DLS, EDS mapping, VSM, and electron microscope imaging. Cytotoxic effects of the nanoparticles for the A549 (lung adenocarcinoma) and MRC-5 (normal) cell lines was investigated by MTT assay. Furthermore, the effects of Fe3O4@Glucose-Gingerol nanoparticles on the expression of the CASP8, BAX, and BCL2 genes and the activity of Caspase 3 were characterized. The flow cytometry assay (annexin V/PI) was employed to find out the percentage of apoptotic cells. The Fe3O4@Glu-Gingerol NPs were spherical (42-67 nm), without elemental impurity, and with surface charge, DLS size, and magnetic saturation of -47.7 mV, 154 nm, and 35 emu/g, respectively. Fe3O4@Glu-Gingerol NPs showed a remarkable greater toxicity in the A549 cells than normal cell line with the 50 % inhibition concentration (IC50) of 190 and 554 µg/mL, respectively. Treatment of lung adenocarcinoma cells with the Fe3O4@Glu-Gingerol NPs led to an increase in cell apoptosis from 4.6 to 39.48 %. Also, the CASP8 and BAX genes were upregulated by 2.49 and 2.8 folds, respectively, while a downregulation by 0.75 folds was noticed for the BCL2. Moreover, apoptotic features were observed in Fe3O4@Glu-Gingerol NPs treated cells by Hoechst staining, and activation of Caspase 3 by 2.8 folds. This study revealed that the Fe3O4@Glu-Gingerol NPs have antiproliferative effects on the lung adenocarcinoma cell line by activation of intrinsic and extrinsic apoptosis that is a promising feature in cancer treatment.

8.
J Trace Elem Med Biol ; 83: 127369, 2024 May.
Article in English | MEDLINE | ID: mdl-38176316

ABSTRACT

BACKGROUND: The use of nanomaterials in cancer diagnosis and treatment has received considerable interest. Preparation of nanoscale complex molecules could be considered to improve the efficacy and minimize toxicity of the product. This work aimed to biosynthesize BiFe2O4@Ag nanocomposite using the Chlorella vulgaris extract and its cytotoxic effect on colon cancer cell line. METHODS: The physicochemical properties of the bioengineered BiFe2O4 @Ag were investigated by Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy (FE-SEM), Zeta potential, Dynamic Light Scattering (DLS), Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-ray Spectroscopy (EDX), Vibrating-sample Magnetometer (VSM) and X-ray Diffraction Analysis (XRD). The cytotoxic potential of BiFe2O4 @Ag was evaluated by MTT assay against SW480 colon cancer cell line. The expression levels of apoptotic genes including BAX, BCL2 and CASP8 were determined by Real-time PCR. The rate of apoptosis and necrosis of the cancer cells as well as the cell cycle analysis were evaluated by flow cytometry. RESULTS: Physicochemical assays indicated the nanoscale synthesis (10-70 nm) and functionalization of BiFe2O4 nanoparticles by Ag atoms. The VSM analysis revealed the magnetism of BiFe2O4 @Ag nanocomposite. According to the MTT assay, colon cancer cells (SW480) were considerably more sensitive to BiFe2O4 @Ag nanocomposite than normal cells. Apoptotic cell percentage increased from 1.93% to 73.66%, after exposure to the nanocomposite. Cell cycle analysis confirmed an increase in the number of the cells in subG1 and G0/G1 phases among nanocomposite treated cells. Moreover, treating the colon cancer cells with BiFe2O4 @Ag caused an increase in the expression of CASP8, BAX, and BCL2 genes by 3.1, 2.6, and 1.2 folds, respectively. Moreover, activity of Caspase-3 protein increased by 2.4 folds and apoptotic morphological changes appeared which confirms that exposure to the nanocomposite induces extrinsic pathway of apoptosis in colon cancer cells. CONCLUSION: The considerable anticancer potential of the synthesized BiFe2O4 @Ag nanocomposite seems to be related to the induction of oxidative stress which leads to inhibit cell cycle progression and cell proliferation. This study reveals that the BiFe2O4 @Ag is a potent compound to be used in biomedical fields.


Subject(s)
Antineoplastic Agents , Chlorella vulgaris , Colonic Neoplasms , Metal Nanoparticles , Nanocomposites , Humans , Chlorella vulgaris/metabolism , bcl-2-Associated X Protein/metabolism , Spectroscopy, Fourier Transform Infrared , Apoptosis , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Nanocomposites/chemistry , Metal Nanoparticles/chemistry , Caspase 8/metabolism , Caspase 8/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
9.
Biol Trace Elem Res ; 202(5): 2022-2035, 2024 May.
Article in English | MEDLINE | ID: mdl-37642811

ABSTRACT

The incidence and mortality of breast cancer are growing which indicates the inefficiency of the current chemotherapy drugs. Due to the anticancer potential of Zn and Ag and the magnetic feature of iron oxide, in this work, we synthesized ZnFe2O4-Ag nanocomposite using Chlorella vulgaris and investigated its anticancer effect on breast cancer cell line. Physicochemical characterization was performed by FT-IR, XRD, SEM, TEM, VSM, EDS mapping, UV, and zeta potential assays. Cell cytotoxicity and apoptosis frequency were studied by the MTT and flow cytometry assays. Also, cell cycle analysis, Hoechst staining, and measuring ROS (reactive oxygen species) level were performed. The synthesized particles were almost spherical with a size range of 14-52 nm. The FT-IR and XRD assays confirmed the proper synthesis of the particles and VSM analysis showed that particles had magnetic property and the maximum saturation magnetization was 0.8 Emu/g. Also, the EDS mapping of the nanocomposite showed the Zn, Fe, O, and Ag elements. The MTT assay showed that the 50% inhibitory concentration (IC50) of ZnFe2O4-Ag for breast cancer and normal cells were 28 and 154 µg/mL, respectively, and the nanocomposite had stronger anticancer activity than cisplatin (IC50 = 84 µg/mL). Flow cytometry analysis showed that the exposure to the nanocomposite induced cell apoptosis by 77.5% and significantly induced ROS generation. Also, treating breast cancer cells with the nanocomposite induced cell cycle arrest and apoptotic features, including chromatin condensation and fragmentation. In conclusion, ZnFe2O4-Ag nanocomposite synthesized by C. vulgaris could suppress the proliferation of breast cancer cells by the generation of oxidative stress, apoptosis induction, and cell cycle arrest.


Subject(s)
Breast Neoplasms , Chlorella vulgaris , Humans , Female , MCF-7 Cells , Chlorella vulgaris/metabolism , Reactive Oxygen Species/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Spectroscopy, Fourier Transform Infrared , Apoptosis
10.
Biol Trace Elem Res ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37792268

ABSTRACT

Cancer, the leading cause of death worldwide, has witnessed significant advancements in treatment through targeted therapies. Among the proto-oncogenes prevalent in human cancers, KRAS stands out, and recent research has focused on long noncoding RNAs (lncRNAs) as regulators of miRNAs targeting the KRAS oncogene. This study specifically explores lncRNAs involved in the KRAS pathway in colorectal cancer (CRC). To investigate this, researchers employed iron oxide nanoparticles coated with glucose and conjugated with Oleuropein (Fe3O4@Glu-Oleuropein NPs) to evaluate their impact on candidate lncRNAs associated with KRAS pathway deregulation. The study utilized TCGA data to identify genes affected by KRAS mutation and lncRNAs linked to KRAS in CRC. Enrichr and MsigDB databases helped identify relevant pathways. Genes with a correlation coefficient above 0.5 and a P-value less than 0.01 with candidate lncRNAs were selected. MTT and flow cytometry assays determined the anti-proliferative and apoptotic effects of Fe3O4@Glu-Oleuropein NPs on CRC cells (SW480) and normal cells (HEK293). The findings showed that increased expression of FEZF1-AS1, GAS6-AS1, and LINC00920 correlated with mutated KRAS, and co-expressed genes were significantly involved in hypoxia, KRAS signaling, DNA repair, and IL-2/STAT5 signaling pathways. Fe3O4@Glu-Oleuropein NPs exhibited higher toxicity toward cancer cells, with IC50 values of 92 µg/ml for SW480 and 281 µg/ml for HEK293. Flow cytometry analysis revealed a substantial increase in necrotic and apoptotic cells when treated with Fe3O4@Glu-Oleuropein, along with down-regulation of GAS6-AS1, LINC00920, and FEZF1-AS1 lncRNAs in treated cells. In conclusion, this study highlights the therapeutic potential of Fe3O4@Glu-Oleuropein on colon cancer cells in vitro. The identification of lncRNAs involved in the KRAS pathway provides insights into the underlying mechanisms and offers avenues for further research in targeted cancer therapies.

11.
Adv Biomed Res ; 12: 120, 2023.
Article in English | MEDLINE | ID: mdl-37434942

ABSTRACT

Background: According to the bioinformatics analyses and previous studies, bone morphogenetic protein receptor type 1B (BMPR1B) dysregulation could remarkably affect breast cancer (BC) status as a potential biomarker and tumor suppressor. Therefore, the analysis of the expression level of BMPR1B and other relevant biological factors such as microRNAs, long non-coding RNAs, downstream proteins in the relevant signaling pathways, and finding the accurate biological mechanism of BMPR1B could be helpful for a better understanding of BC pathogenicity and discovering the new treatment methods and drugs. Materials and Methods: R Studio software (4.0.2) was used for microarray data analyses. GSE31448 dataset was downloaded by GEOquery package and analyzed by limma package. STRING and miRWalk online databases and Cytoscape software were used for interaction analyses. Quantitative measurement of BMPR1B expression level was performed by qRT-PCR experiment. Result: Microarray and real-time PCR analysis revealed that BMPR1B has a significant downregulation in the transforming growth factor (TGF)-beta and bone morphogenic protein (BMP) signaling pathways in BC samples. BMPR1B is a potential diagnostic biomarker, regulated by hsa-miR-181a-5p. Also, BMPR1B regulates the function of BMP2, BMP6, SMAD4, SMAD5, and SMAD6 proteins. Discussion: BMPR1B have a significant role in the development of BC by regulating the potential proteins' function, playing the diagnostic biomarker role, and regulation of TGF-beta and BMP signaling pathways. The high amount of BMPR1B protein helps in increasing the survival rate of the patients.

12.
PLoS One ; 18(7): e0288003, 2023.
Article in English | MEDLINE | ID: mdl-37506087

ABSTRACT

The cancer microenvironment plays a crucial role in promoting metastasis and malignancy even in normal cells. In the present study, the effect of acidic and conditioned media of cancer cells (MDA-MB-231), separately and in combination, was studied for the first time on the cell death mechanisms and DNA methylation of normal fibroblasts (NIH/3T3). Cell survival of conditioned media was rescued by the addition of acidic media to conditioned media, as shown by the results. Cell metabolic activity is deviated in a direction other than the Krebs cycle by acidic media The mitochondrial metabolic activity of all groups was enhanced over time, except for acidic media. Unlike the highest amount of ROS in conditioned media, its level decreased to the level of acidic media in the combination group. Furthermore, cells were deviated towards autophagy, rather than apoptosis, by the addition of acidic media to the conditioned media, unlike the conditioned media. Global DNA methylation analysis revealed significantly higher DNA hypomethylation in acidic media than in normal and combination media. Not only were cells treated with conditioned media rescued by acidic media, but also DNA hypomethylation and apoptosis in the combination group were decreased through epigenetic modifications. The acidic and conditioned media produced by cancer cells can remotely activate malignant signaling pathways, much like zombies, which can cause metabolic and epigenetic changes in normal cells.


Subject(s)
Neoplasms , Signal Transduction , Humans , Culture Media, Conditioned/pharmacology , Culture Media, Conditioned/metabolism , Fibroblasts/metabolism , Neoplasms/pathology , DNA/metabolism , Tumor Microenvironment , Cell Line, Tumor
13.
Biometals ; 36(6): 1273-1284, 2023 12.
Article in English | MEDLINE | ID: mdl-37351759

ABSTRACT

The use of metal nanoparticles (NPs) conjugated with natural herbal molecules in biomedical applications has been growing. In this work, we synthesized Iron oxide NPs conjugated with thymol (Fe3O4@Glu-Thymol) and investigated their antibacterial and anticancer potentials. Physicochemical features of the NPs were studied by FT-IR, EDS-mapping, XRD, DLS, zeta potential, and electron microscopy. The antibacterial activity of the NPs against Pseudomonas aeruginosa and anticancer activity for breast cancer cells was investigated by broth microdilution and MTT and flow cytometry assays, respectively. The expression of apoptosis signaling genes in breast cancer cells that were treated with the NPs was studied by qPCR assay. The NPs were spherical, in a size range of 40-66 nm, without impurities, and with zeta potential and hydrodynamic size of - 23 mV and 185 nm, respectively. Moreover, the FT-IR and XRD assays confirmed the proper synthesis of Fe3O4 and conjugation with thymol. The minimum inhibitory concentration of the NPs for P. aeruginosa strains was 64-128 µg/mL. Our results showed that Fe3O4@Glu-Thymol was considerably more toxic for breast cancer cells than normal human cells and the 50% inhibitory concentration were 90.4 and 322 µg/mL, respectively. Upon treating breast cancer cells with the NPs the frequency of cell apoptosis increased by 18.9%. Also, the expression of the BAX and CASP8 genes in NPs treated cells significantly increased by 1.75 and 2.25 folds, respectively while the BCL-2 gene remained almost constant. This study reveals that Fe3O4@Glu-Thymol has considerable potential to be used in biomedical fields.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Metal Nanoparticles , Nanoparticles , Humans , Female , Thymol/pharmacology , bcl-2-Associated X Protein , Genes, bcl-2 , Spectroscopy, Fourier Transform Infrared , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry , Caspase 8
14.
3 Biotech ; 13(6): 195, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37206358

ABSTRACT

The incidence of liver cancer, the third cause of cancer-associated death, has been growing, worldwide. The increasing trend of liver cancer incidence and mortality indicates the inefficiency of current therapeutic approaches, especially anticancer chemotherapy. Owing to the promising anticancer potential of Thiosemicarbazone (TSC) complexes, this work was conducted to synthesize titanium oxide nanoparticles conjugated with TSC through glutamine functionalization (TiO2@Gln-TSC NPs) and characterize their anticancer mechanism in HepG2 liver cancer cells. Physicochemical analyses of the synthesized particles, including FT-IR, XRD, SEM, TEM, Zeta potential and DLS, and EDS-mapping confirmed the proper synthesis and conjugation of TiO2@Gln-TSC NPs. The synthesized NPs were almost spherical, with a size range of 10-80 nm, a zeta potential of - 57.8 mV, a hydrodynamic size of 127 nm, and without impurities. Investigation of the cytotoxic effect of TiO2@Gln-TSC in HepG2 and HEK293 human normal cells indicated significantly higher toxicity in cancer cells (IC50 = 75 µg/mL) than normal cells (IC50 = 210 µg/mL). Flow cytometry analysis of TiO2@Gln-TSC treated and control cells showed that the population of apoptotic cells considerably increased from 2.8 to 27.3% after treatment with the NPs. Moreover, 34.1% of the TiO2@Gln-TSC treated cells were mainly arrested at the sub-G1 phase of the cell cycle, which was significantly greater than control cells (8.4%). The Hoechst staining assay showed considerable nuclear damage, including chromatin fragmentation and the appearance of apoptotic bodies. This work introduced TiO2@Gln-TSC NPs as a promising anticancer compound that could combat liver cancer cells through apoptosis induction.

15.
Biol Trace Elem Res ; 201(5): 2407-2415, 2023 May.
Article in English | MEDLINE | ID: mdl-35761113

ABSTRACT

BACKGROUND: Lead occupational exposure is now a main concern in the modern world. Lead is a non-biodegradable element with multi-devastating effects on different organs. Acute or chronic exposure to lead is reported to be one of the most important causes of infertility both in males and females basically by inducing oxidative stress and apoptosis. OBJECTIVES: The current study scrutinized the mitigating effects of N-acetylcysteine (NAC) on lead toxicity, oxidative stress, and apoptotic/anti-apoptotic genes in the testis tissues of male rats. METHODS: Rats were randomly divided into a control group (G1) and four study groups treated with single and continuous doses of lead with and without NAC administration. Malondialdehyde (MDA), total antioxidant capacity (TAC), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed as oxidative stress biomarkers and the expression of apoptosis-related genes was studied using RT-PCR. RESULTS: Continuous exposure to lead caused a significant decrease in sperm count, motility, viability, and morphology (P < 0.001). Number of germinal cells, Leydig cells, spermatocytes, and the diameter of seminiferous tubule were significantly decreased (P < 0.001) in G3 group. Continuous exposure to lead significantly decreased TAC content, but increased the levels of MDA and 8-OHdG (P < 0.001). Administration of continuous dose of lead dramatically increased expression of Bax, Caspase-3, Caspase-8, Cytochrome-C, MMP2, and MMP9 genes in testicular tissue. NAC treatments not only improved morphological changes and sperm quality, but also enhanced antioxidant balance and modulated apoptosis process in testicular tissue of rats. CONCLUSION: Lead exposure strongly motivated testicular cells towards apoptosis, caused an oxidant/antioxidant imbalance, and decreased sperm quality along with morphological changes in testis cells. NAC treatments was associated with protective effects on testicular tissue mainly by rebalancing of the antioxidants capacity, as well as downregulation of apoptosis-related genes.


Subject(s)
Acetylcysteine , Antioxidants , Rats , Male , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Acetylcysteine/pharmacology , Lead/metabolism , Semen/metabolism , Testis , Oxidative Stress , Spermatozoa , 8-Hydroxy-2'-Deoxyguanosine/metabolism , 8-Hydroxy-2'-Deoxyguanosine/pharmacology , Apoptosis , Dietary Supplements
16.
Sci Rep ; 12(1): 21245, 2022 12 08.
Article in English | MEDLINE | ID: mdl-36482061

ABSTRACT

Due to the high prevalence and considerable increase of prostate cancer, finding novel therapeutic compounds for the treatment of prostatic cancer has been the goal of many researches. In this study, we aimed to fabricate the Bismuth oxide (Bi2O3) NPs, functionalized with glutamine (Gln) and conjugated with Thiosemicarbazide (TSC). Then, the anticancer mechanism of the synthesized NPs was investigated using the cellular and molecular tests including MTT assay, Flow cytometry, Caspase-3 activity assay, Hoechst staining and Real Time PCR. The FT-IR and XRD assays confirmed the identity of the synthesized Bi2O3/Gln-TSC NPs. The size range of the synthesized spherical particles was 10-60 nm and the zeta potential was - 23.8 mV. The purity of the NPs was confirmed by EDX-mapping analysis. The Bi2O3/Gln-TSC was considerably more toxic for prostate cancer cells than normal human cells and the IC50 was calculated 35.4 and 305 µg/mL, respectively. The exposure to the NPs significantly increased the frequency of apoptotic cells from 4.7 to 75.3%. Moreover, the expression of the CASP8, BAX, and Bcl-2 genes after exposure to the NPs increased by 2.8, 2.3, and 1.39 folds. Treating the cancer cells with Bi2O3/Gln-TSC increased the activity of the Caspase-3 protein and apoptotic morphological features were observed by Hoechst staining in the treated cells. This work showed that Bi2O3/Gln-TSC has considerable cytotoxicity for prostate cancer cells and could inducing both intrinsic and extrinsic pathways of apoptosis.


Subject(s)
Glutamine , Prostatic Neoplasms , Humans , Male , Caspase 3/genetics , Genes, bcl-2 , Spectroscopy, Fourier Transform Infrared , Prostatic Neoplasms/genetics , Caspase 8
17.
Cell J ; 24(10): 628-636, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36259481

ABSTRACT

OBJECTIVE: Preimplantation genetic testing for aneuploidies (PGT-A) is used to determine chromosomal normality and achieve a successful live birth in infertile couples. There is a possible correlation between chromosomal aneuploidy, embryo development and pregnancy rate. This study evaluated the influence of single blastomere biopsy (SBB) on embryo development and pregnancy rates during frozen embryo transfer (FET) and fresh cycles. MATERIALS AND METHODS: This quasi-experimental study evaluated 115 intracytoplasmic sperm injection (ICSI) cycles, including 443 embryos (6-8 cells) with a grade A on day three, following PGT-A in the fresh or FET cycles from February 2018 to June 2020. In addition, the fresh cycles without PGT were included as a control group (n=166 embryos). SBB was done on day three and was grouped as FET-PGT (n=149) and the fresh-PGT (n=128). RESULTS: There is a more aneuploidy rate in the FET-PGT group compared to the fresh-PGT cycle (36.60% vs. 20.38%, P<0.001). There is a rate of higher development and blastocyst in the control group. While the embryos of PGT groups showed higher degrees of expansion (expansion 5) on day five. 8.6, 8.59, and 9.37% of expansion 3, 4, and 5 in the fresh-PGT embryos, 12.58, 2.78, and 14.84% of expansion 3, 4, and 5 in the FET-PGD embryos compared to 10.84and 33.73% of expansion 3 and 4 in the control group (without expansion 5; P<0.001). There was no significant relationship between 13, 18, and 21 chromosome aneuploidies with blastocyst development competence among the groups (P<0.1). Following embryo transfer (n=97), the spontaneous abortion rate was higher in the FET-PGT cycles compared to the fresh-PGT and control groups (50 vs. 22 and 11%, respectively; P<0.04). CONCLUSION: The process of SBB following vitrification significantly decreased embryo development and pregnancy outcomes. Therefore, a morphological analysis could not be reliable in selecting chromosomally normal embryos.

18.
Genes Environ ; 44(1): 16, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581633

ABSTRACT

BACKGROUND: The most frequent malignancy in women is breast cancer (BC). Gastric cancer (GC) is also the leading cause of cancer-related mortality. Long non-coding RNAs (lncRNAs) are thought to be important neurotic regulators in malignant tumors. In this study, we aimed to evaluate the expression level of NEAT1 and the interaction of this non-coding RNA with correlated microRNAs, lncRNAs, and mRNAs or protein coding genes, experimentally and bioinformatically. METHODS: For the bioinformatics analyses, we performed RNA-RNA and protein-protein interaction analyses, using ENCORI and STRING. The expression analyses were performed by five tools: Microarray data analysis, TCGA data analysis (RNA-seq, R Studio), GEPIA2, ENCORI, and real-time PCR experiment. qRT-PCR experiment was performed on 50 GC samples and 50 BC samples, compared to adjacent control tissue. RESULTS: Based on bioinformatics and experimental analyses, lncRNA NEAT1 have a significant down-regulation in the breast cancer samples with tumor size lower than 2 cm. Also, it has a significant high expression in the gastric cancer patients. Furthermore, NEAT1 have a significant interaction with XIST, hsa-miR-612 and MTRNR2L8. High expression of NEAT1 have a correlation with the lower survival rate of breast cancer samples and higher survival rate of gastric cancer patients. CONCLUSION: This integrated computational and experimental investigation revealed some new aspects of the lncRNA NEAT1 as a potential prognostic biomarker for the breast cancer and gastric cancer samples. Further investigations about NEA1 and correlated mRNAs, lncRNAs, and microRNAs - specially the mentioned RNAs in this study - can lead the researchers to more clear information about the role of NEAT1 in the breast cancer and gastric cancer.

19.
Microb Drug Resist ; 28(3): 293-305, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35005985

ABSTRACT

The opportunistic pathogen, Pseudomonas aeruginosa, uses different mechanisms as well as biofilm production to acquire antibiotic resistance. The polysaccharide synthesis locus (psl) genes play an important role in P. aeruginosa biofilm formation. Therefore, targeting the expression of psl genes can be a suitable strategy to prevent the formation of biofilms by antibiotic-resistant strains. Today, advances in nanotechnology provide a novel potential strategy to combat antibiotic-resistant bacteria. In this study, the silver nanoparticles (Ag NPs) synthesized using a chemical co-precipitation method and, after conjugation with thiosemicarbazide, their effect on the biofilm-forming ability are studied in P. aeruginosa isolates. Chemical properties of synthesized nanoparticles were determined by scanning and transmission electron microscopy, Fourier transform infrared spectroscopy, diffuse reflectance spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, and energy dispersive X-ray spectroscopy. The results confirmed the spherical/cubic morphology, solution stability, and good dispersion of Ag@Glu-TSC NPs with an average size of 40-60 nm. In addition, minimum inhibitory concentration values of functionalized Ag NPs were at least twofold lower than the Ag NPs (alone). The quantitative PCR data analysis showed a decrease in the expression of the pslA gene in the presence of Ag@Glu-TSC NPs, up to 60%, which was associated with a reduction of biofilm formation compared to control. In conclusion, the Ag@Glu-TSC NPs can be considered a new inhibitor of biofilm production in antibiotic-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Pseudomonas aeruginosa/drug effects , Semicarbazides/pharmacology , Silver/pharmacology , Biofilms/drug effects , Drug Liberation , Drug Resistance, Multiple, Bacterial , Drug Stability , Microbial Sensitivity Tests , Particle Size , Solubility
20.
Mol Biol Rep ; 49(3): 2217-2226, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35001246

ABSTRACT

BACKGROUND: Seeking novel anticancer agents with minimal side effects against gastric cancer is vitally important. Copper, as an important trace element, takes roles in different physiologic pathways. Also, there is a higher demand for copper in cancer cells than normal ones. Copper complexes containing a therapeutic ligand could be promising candidates for gastric cancer chemotherapy. METHODS AND RESULTS: In this work, copper oxide nanoparticles were synthesized, functionalized with glutamic acid (CuO@Glu) and conjugated with thiosemicarbazone (CuO@Glu/TSC NPs). The NPs were characterized and their antiproliferative potential against AGS cancer cells was investigated using MTT, flow cytometry, Hoechst staining, and caspase 3 activation assays. The FT-IR results showed the proper binding of TSC to CuO@Glu NPs and crystallinity of the prepared NPs was confirmed by the XRD pattern. The EDX analysis confirmed the presence of Cu, N, C, O, and S elements and lack of impurities. The Hydrodynamic size and zeta potential of the CuO@Glu/TSC NPs were 168 nm and 27.5 mV, respectively. The NPs had spherical shape and were in a size range of 10 to 60 nm in diameter. This work revealed that CuO@Glu/TSC NPs efficiently inhibited the proliferation of AGS cells with significantly lower IC50 value (203 µg/mL) than normal HEK293 cells (IC50 = 435 µg/mL). Flow cytometry and Hoechst staining obviously revealed apoptosis induction among CuO@Glu/TSC treated cells, and caspase-3 activity significantly increased by 1.4 folds. CONCLUSIONS: This study introduced CuO@Glu/TSC as an efficient anticancer against gastric cancer cells with lower toxicity toward normal cells which could be employed for cancer treatment after further studies.


Subject(s)
Adenocarcinoma , Metal Nanoparticles , Nanoparticles , Thiosemicarbazones , Apoptosis , Copper/chemistry , Copper/pharmacology , HEK293 Cells , Humans , Metal Nanoparticles/chemistry , Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared , Thiosemicarbazones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...