Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
MedComm (2020) ; 3(1): e115, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35281790

ABSTRACT

Since the rapid onset of the COVID-19 or SARS-CoV-2 pandemic in the world in 2019, extensive studies have been conducted to unveil the behavior and emission pattern of the virus in order to determine the best ways to diagnosis of virus and thereof formulate effective drugs or vaccines to combat the disease. The emergence of novel diagnostic and therapeutic techniques considering the multiplicity of reports from one side and contradictions in assessments from the other side necessitates instantaneous updates on the progress of clinical investigations. There is also growing public anxiety from time to time mutation of COVID-19, as reflected in considerable mortality and transmission, respectively, from delta and Omicron variants. We comprehensively review and summarize different aspects of prevention, diagnosis, and treatment of COVID-19. First, biological characteristics of COVID-19 were explained from diagnosis standpoint. Thereafter, the preclinical animal models of COVID-19 were discussed to frame the symptoms and clinical effects of COVID-19 from patient to patient with treatment strategies and in-silico/computational biology. Finally, the opportunities and challenges of nanoscience/nanotechnology in identification, diagnosis, and treatment of COVID-19 were discussed. This review covers almost all SARS-CoV-2-related topics extensively to deepen the understanding of the latest achievements (last updated on January 11, 2022).

2.
Talanta ; 230: 122276, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33934760

ABSTRACT

Almost 13% of all death in the world is related to cancer. One of the major reasons for failing cancer treatment is the late diagnosis of the tumors. Thus, diagnosis at the early stages could be vital for the treatment. Serum autoantibodies, as tumor markers, are becoming interesting targets due to their medical and biological relevance. Among them, anti-p53 autoantibody in human sera is found to be involved in a variety of cancers. Regarding this issue, a novel and sensitive electrochemical biosensor for detection of anti-p53 autoantibody has been developed. For this purpose, a nanocomposite including thionine (as an electron transfer mediator)/chitosan/nickel hydroxide nanoparticles/electrochemically reduced graphene oxide (Th-CS-Ni(OH)2NPs-ERGO) as a support platform was fabricated on the surface of glassy carbon electrode via a layer-by-layer manner and characterized through common electrochemical and imaging techniques. Then, p53-antigen was immobilized on the nanocomposite and used in an indirect immunoassay with horseradish peroxidase (HRP)-conjugated secondary antibody and H2O2 as the substrate, following the typical Michaelis-Menten kinetics. Under optimized condition, two techniques, including differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS) as a label free technique, applied for the biomarker detection. The linear ranges and LODs were obtained 0.1-500 pg mL-1 and 0.001 pg mL-1 using DPV and 5-150 pg mL-1 and 0.007 pg mL-1 using EIS, respectively. Furthermore, the proposed biosensor displayed satisfying stability, selectivity, and reproducibility. According to the results, the presented protocol is promising to develop other electrochemical biosensors.


Subject(s)
Biosensing Techniques , Graphite , Autoantibodies , Electrochemical Techniques , Electrodes , Humans , Hydrogen Peroxide , Reproducibility of Results
3.
Mikrochim Acta ; 186(11): 698, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31617015

ABSTRACT

A nanostructure was prepared from titania nanoparticles and copper oxide (TiO2NP@CuO) and used to modify a carbon paste electrode (CPE). The modified CPE is shown to enable sensitive voltammetric determination of the drug clozapine (CLZ). The sensor was characterized by various techniques and some key parameters were optimized. Under the optimum conditions and at a working potential of 0.6 V (vs. Ag/AgCl), the modified CPE has two linear response ranges, one from 30 pmol L-1 to 4 nmol L-1 of CLZ, the other from 4 nmol L-1 to 10 µmol L-1. The detection limit is as low as 9 pM. The transfer coefficient (α) and catalytic rate constant (kcat) were calculated and the reliability of the sensor was estimated for CLZ sensing in real samples where it gave satisfactory results. Graphical abstract Applicability of the TiO2NP@CuO nanostructures in fabrication of an efficient clozapine (CLZ) sensor based on the use of a carbon paste electrode.


Subject(s)
Antipsychotic Agents/blood , Clozapine/blood , Copper/chemistry , Electrochemical Techniques/methods , Metal Nanoparticles/chemistry , Titanium/chemistry , Antipsychotic Agents/chemistry , Carbon/chemistry , Catalysis , Clozapine/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Humans , Limit of Detection , Oxidation-Reduction , Tablets/analysis
4.
Mikrochim Acta ; 186(9): 641, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444649

ABSTRACT

A nanocomposite was prepared with reduced graphene oxide, gold nanoparticles and an electropolymerized film made from 2-amino-5-mercapto-1,3,4-thiadiazole. An electrochemical sensor for doxorubicin (DOX) was constructed by modifying a glassy carbon electrode (GCE) with the nanocomposite. The modified GCE was studied by electrochemical techniques which showed it to enable highly sensitive sensing of DOX. Response (typically measured at a typical working potential of -0.56 V vs. Ag/AgCl) is linear in the 30 pM to 30 nM and 30 nM to 30 µM DOX concentration ranges, with a limit of detection (LOD) of 9 pM (at an S/N ratio of 3). The method was applied to the determination of DOX in serum and gave recoveries that ranged between 92 and 108%. Graphical abstract A combination of materials consisting of reduced graphene oxide (rGO), gold nanoparticles (AuNPs) and an electropolymerized film of 2-amino-5-mercapto-1,3,4-thiadiazole (poly-AMT, PAMT) is described. The nanocomposite was placed on a glassy carbon elkectrode (GCE) in order to fabricate an electrochemical sensor for doxorubicin (DOX).


Subject(s)
Antibiotics, Antineoplastic/analysis , Biosensing Techniques , Doxorubicin/analysis , Electrochemical Techniques , Nanocomposites/chemistry , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Molecular Conformation , Oxidation-Reduction , Particle Size , Polymers/chemistry , Surface Properties , Thiadiazoles/chemistry
5.
J Org Chem ; 84(14): 9307-9312, 2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31194555

ABSTRACT

Here we report a paired electrochemical coupling of readily accessible nitro-compounds with benzyl alcohols to yield nitrone derivatives. In this work, electrochemical behavior of nitrobenzene and benzyl alcohol derivatives was studied by cyclic voltammetry and controlled potential coulommetry. Electrochemical reactions have been performed in aqueous/ethanol (or acetonitrile) solutions by employing common graphite electrodes and a simple controlled current protocol which can make this strategy more appealing than other conventional pathways.

6.
Sci Rep ; 9(1): 4537, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30872620

ABSTRACT

A green, facile and tunable pair electrochemical process was developed for the synthesis of new benzenesulfonamide derivatives by using reductive controlled potential electrolysis of dinitrobenzene (DNB) in the presence of arylsulfinic acids (ASAs). In addition to the usual features associated with paired electrochemical methods, eg high energy efficient, this method has a tunable characteristic, so that, by adjusting the potential, different products can be synthesized. By applying the potential of -0.4 V vs. Ag/AgCl, N-hydroxy-N-(4-nitrophenyl)benzenesulfonamide derivatives are selectively formed, while, by applying the potential of -1.1 V vs. Ag/AgCl, the final products are N-(4-amino-3-(phenylsulfonyl)phenyl) benzenesulfonamide derivatives. This work beautifully shows the potential applications of the electrochemistry as a powerful tool for the synthesis of organic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...