Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Stroke Cerebrovasc Dis ; 33(6): 107709, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570059

ABSTRACT

OBJECTIVES: Reduced cardiac outflow due to left ventricular hypertrophy has been suggested as a potential risk factor for development of cerebral white matter disease. Our study aimed to examine the correlation between left ventricular geometry and white matter disease volume to establish a clearer understanding of their relationship, as it is currently not well-established. METHODS: Consecutive patients from 2016 to 2021 who were ≥18 years and underwent echocardiography, cardiac MRI, and brain MRI within one year were included. Four categories of left ventricular geometry were defined based on left ventricular mass index and relative wall thickness on echocardiography. White matter disease volume was quantified using an automated algorithm applied to axial T2 FLAIR images and compared across left ventricular geometry categories. RESULTS: We identified 112 patients of which 34.8 % had normal left ventricular geometry, 20.5 % had eccentric hypertrophy, 21.4 % had concentric remodeling, and 23.2 % had concentric hypertrophy. White matter disease volume was highest in patients with concentric hypertrophy and concentric remodeling, compared to eccentric hypertrophy and normal morphology with a trend-P value of 0.028. Patients with higher relative wall thickness had higher white matter disease volume (10.73 ± 10.29 cc vs 5.89 ± 6.46 cc, P = 0.003), compared to those with normal relative wall thickness. CONCLUSION: Our results showed that abnormal left ventricular geometry is associated with higher white matter disease burden, particularly among those with abnormal relative wall thickness. Future studies are needed to explore causative relationships and potential therapeutic options that may mediate the adverse left ventricular remodeling and its effect in slowing white matter disease progression.


Subject(s)
Hypertrophy, Left Ventricular , Leukoencephalopathies , Magnetic Resonance Imaging , Ventricular Function, Left , Ventricular Remodeling , Humans , Male , Female , Hypertrophy, Left Ventricular/diagnostic imaging , Hypertrophy, Left Ventricular/physiopathology , Hypertrophy, Left Ventricular/pathology , Middle Aged , Leukoencephalopathies/diagnostic imaging , Leukoencephalopathies/physiopathology , Aged , Risk Factors , Echocardiography , Predictive Value of Tests , Heart Ventricles/diagnostic imaging , Heart Ventricles/physiopathology , Heart Ventricles/pathology , Retrospective Studies , Adult , White Matter/diagnostic imaging , White Matter/pathology , Risk Assessment
2.
Ital J Pediatr ; 50(1): 11, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254126

ABSTRACT

BACKGROUND: Hemodialysis (HD) success is dependent mainly on vascular access (VA). The aim of this study is to share the experience of Pediatric Nephrology Unit (PNU), Cairo University Children's Hospital (CUCH), with VA-related obstacles in end stage kidney disease (ESKD) HD children. METHODS: This is a retrospective analysis of VA related data of 187 ESKD children received regular HD over 3 year duration (2019-2021). Kaplan-Meier curves were used to present arteriovenous fistula (AVF) and cuffed catheters survivals. RESULTS: Uncuffed central venous catheter (CVC) was the primary VA for HD in up to 97.3% with 2.7% of patients had AVF performed and attained maturation before initiation of regular HD. Fifty-six (29.9%) patients have inserted 120 tunneled CVCs. AVFs & AV grafts (AVF) were performed in 79 (42.2%) and 6 (3.2%) patients respectively. There were 112 uncuffed CVCs implanted beneath the screen in Rt internal jugular vein (IJV) (44%) Lt IJV (17%), right internal mammary vein (2.7%) while Trans hepatic (TH) technique was used to place 39 uncuffed CVCs (34%) in the inferior vena cava (IVC). Catheter-related bacteremia (CRB) was the most frequent complication in uncuffed and cuffed CVCs (2.58 / 100 catheters day and 10.1 /1000 catheter days respectively). AVFs achieved a high success rate (83%) after 757.71 ± 512.3 functioning days. CONCLUSION: Native AVF is the preferred VA for pediatric HD but its creation is limited by the small sized vessels where non-cuffed CVC could be a reasonable relatively long-term alternative. Challenging situations (occluded central veins) could benefit from TH technique of CVC insertion in IVC.


Subject(s)
Bacteremia , Kidney Failure, Chronic , Humans , Child , Retrospective Studies , Renal Dialysis , Kidney Failure, Chronic/therapy , Catheters
3.
J Stroke Cerebrovasc Dis ; 32(11): 107372, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37738918

ABSTRACT

OBJECTIVES: Left atrial enlargement (LAE) is a known risk factor for atrial fibrillation, a common cause of large vessel occlusion (LVO) leading to ischemic stroke. While robust cerebral collaterals protect penumbral tissue from infarction, the effect of structural heart disease on cerebral collaterals remains uncertain. This study aims to investigate the association between LAE and cerebral collaterals in patients with acute LVO stroke. MATERIALS AND METHODS: We conducted a retrospective study of consecutive patients with middle cerebral and/or internal carotid LVO who underwent endovascular thrombectomy (EVT) between 2012 to 2020. Consecutive patients with echocardiography and computed tomography angiography (CTA) of the head were included. Multivariate logistic regression analysis was performed to evaluate the relationship between LAE and poor cerebral collaterals, adjusting for demographics (age, sex, race) and vascular risk factors (hypertension, diabetes and smoking). RESULTS: The study included 235 patients with mean age of 69±15 years and an initial mean National Institutes of Health Stroke Scale score of 18. Of these, 89 (37.9 %) had LAE, and 105 (44.7 %) had poor collaterals. Patients with LAE were more likely to have poor collaterals compared to those without LAE (58.4 % vs 36.3 %, P = 0.001). LAE was independently associated with higher odds of poor collaterals (odds ratio, 2.47; P = 0.001), even after adjusting for covariables (odds ratio 1.84, P = 0.048). CONCLUSIONS: Our study demonstrated a significant association between LAE and poor cerebral collaterals in patients with LVO stroke undergoing EVT. Further research is warranted to explore potential shared mechanisms, such as endothelial dysfunction, underlying this heart-brain association.

SELECTION OF CITATIONS
SEARCH DETAIL
...