Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Genet ; 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38219243

ABSTRACT

The renin-angiotensin-aldosterone system has an indispensable function in the uteroplacental circulation, placental growth, and blood pressure optimization. The angiotensin I converting enzyme (ACE) gene is a critical integrator for electrolyte balance, and water retention, along with inhibiting preeclampsia. The main goal of this pertaining study is to assess the contribution of ACE*(Ins/Del) variant with the susceptibility for preeclampsia with focus on the severity of the disease among gestational hypertensive women. This retrospective study included 225 participants [125 PE gestational women, and 100 normotensive healthy controls] matching with age, and geographical region. PE women classified into 82 early-onset PE women, accompanied with 43 late-onset PE women. Additionally, PE women categorized into 59 mild PE women, together with 66 severe PE women. The genotyping and characterization of ACE*(Ins/Del) variant were applied using the PCR technique. Our findings indicated higher frequency of the ACE*(Del/Del) genotype and ACE*(D allele) with elevated risk of preeclampsia compared to normotensive controls under recessive (OR = 2.09, and p-value = 0.007), and allelic (OR = 1.75, and p-value = 0.012) models. In addition, testing logistic regression revealed that the levels of endothelin-1 and malondialdehyde exposed significant difference for the ACE*(Del/Del) genotype among early-onset and late-onset PE women (p-value = 0.024, and 0.23, respectively). Furthermore, carriers of the ACE*(Del/Del) genotype observed statistically significant with lower sodium concentrations among severe PE women (p-value = 0.034). The ACE*(Del/Del) genotype and ACE*(D allele) were associated with increased risk preeclampsia among gestational women. Furthermore, early-onset PE and late-onset PE were correlated with endothelin-1 and malondialdehyde concentrations among Egyptian women.

2.
AMB Express ; 13(1): 57, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37291355

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a more dangerous form of chronic non-alcoholic fatty liver disease (NAFLD). In the current investigation, the influence of citicoline on high-fat diet (HFD)-induced NASH was examined, both alone and in combination with Lactobacillus (probiotic). NASH was induced by feeding HFD (10% sugar, 10% lard stearin, 2% cholesterol, and 0.5% cholic acid) to rats for 13 weeks and received single i.p. injection of streptozotocin (STZ, 30 mg/kg) after 4 weeks. Citicoline was given at two dose levels (250 mg and 500 mg, i.p.) at the beginning of the sixth week, and in combination with an oral suspension of Lactobacillus every day for eight weeks until the study's conclusion. HFD/STZ induced steatohepatitis as shown by histopathological changes, elevated serum liver enzymes, serum hyperlipidemia and hepatic fat accumulation. Moreover, HFD convinced oxidative stress by increased lipid peroxidation marker (MDA) and decreased antioxidant enzymes (GSH and TAC). Upregulation of TLR4/NF-kB and the downstream inflammatory cascade (TNF-α, and IL-6) as well as Pentaraxin, fetuin-B and apoptotic markers (caspase-3 and Bax) were observed. NASH rats also had massive increase in Bacteroides spp., Fusobacterium spp., E. coli, Clostridium spp., Providencia spp., Prevotella interrmedia, and P. gingivalis while remarkable drop in Bifidobacteria spp. and Lactobacillus spp. Co-treatment with citicoline alone and with Lactobacillus improve histopathological NASH outcomes and reversed all of these molecular pathological alterations linked to NASH via upregulating the expression of Nrf2/HO-1 and downregulating TLR4/NF-kB signaling pathways. These results suggest that citicoline and lactobacillus may represent new hepatoprotective strategies against NASH progression.

3.
Mol Biol Rep ; 50(5): 4317-4327, 2023 May.
Article in English | MEDLINE | ID: mdl-36929286

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide in terms of mortality, and susceptibility is attributed to genetic, lifestyle, and environmental factors. Lymphotoxin alpha (LTA) has a crucial role in communicating the lymphocytes with stromal cells and provoking cytotoxic effects on the cancer cells. There are no reports on the contribution of the LTA (c.179 C>A; p.Thr60Asn; rs1041981) gene polymorphism to HCC susceptibility. The main aim of this study is to investigate the association of LTA (c.179 C>A; p.Thr60Asn; rs1041981) variant with the HCC risk in the Egyptian population. METHODS: This case-control study included 317 participants (111 HCC patients, and 206 healthy controls). The LTA (c.179 C>A; p.Thr60Asn; rs1041981) polymorphism was assessed by tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS-PCR) technique. RESULTS: The frequencies of the dominant and recessive models (CA + AA; AA) of the LTA (c.179 C>A; p.Thr60Asn; rs1041981) variant were statistically significant among HCC patients in comparison to controls (p = 0.01; p = 0.007; respectively). The A-allele of LTA (c.179 C>A; p.Thr60Asn; rs1041981) variant was statistically significant in HCC patients in comparison to controls (p ˂ 0.001). CONCLUSION: The LTA (c.179 C>A; p.Thr60Asn; rs1041981) polymorphism was independently associated with an increased risk for hepatocellular carcinoma in the Egyptian population.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Lymphotoxin-alpha/genetics , Carcinoma, Hepatocellular/genetics , Prognosis , Case-Control Studies , Egypt , Genotype , Liver Neoplasms/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics
4.
Environ Sci Pollut Res Int ; 30(18): 52358-52368, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36840879

ABSTRACT

One particularly harmful mycotoxin, aflatoxin B1 (AFB1), usually triggers liver toxicity and oxidative stress in both humans and other mammals. Luteolin (LUTN), a popular active phytochemical molecule, exhibits a strong antioxidant potential. The purpose of this investigation was to explore the potential molecular mechanism in rats and determine if LUTN exhibits protective benefits against AFB1-induced hepatotoxicity. Random selection was used to determine the four treatment groups, each consisting of 24 rats (n = 6). Physiological saline was administered to group 1 (CONT); group 2 received LUTN for a dosage of 50-mg/kg BW. AFB1 was administered to group 3 for a dosage of 0.75-mg/kg BW, and AFB1 with LUTN was given to group 4 at the same dosages mentioned in the previous groups. Rats intoxicated with AFB1 alterations of hepatic transaminases, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), displayed periportal mononuclear cell infiltrations, disorganized lobular architecture, and dispersed necrotic cells in their liver tissues. By reducing serum biochemical levels of the hepatic transaminases ALT and AST brought on by AFB1 exposure, our results demonstrated that LUTN treatment considerably restored liver injury. Through lowering the production of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as by boosting the activity of the antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD), LUTN mitigated the oxidative stress brought on by AFB1. Our findings showed that LUTN significantly reversed the liver damage caused by AFB1. When considered as a whole, LUTN may protect the liver from damage brought on by AFB1 by acting as a potential mitigator and may aid in the creation of cutting-edge therapies to treat liver illnesses in humans and/or animals.


Subject(s)
Antioxidants , Luteolin , Humans , Rats , Animals , Antioxidants/metabolism , Luteolin/pharmacology , Oxidative Stress , Liver/metabolism , Apoptosis , Transaminases/metabolism , Mammals
5.
Biotechnol Appl Biochem ; 70(2): 730-745, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35933706

ABSTRACT

In this study, we worked on anticolon cancer effects and anti-Alzheimer's disease with molecular docking studies. Hamamelitannin, flavokawain A, and triacetyl resveratrol compounds showed good inhibitory activities on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. The inhibition effects of flavokawain A, hamamelitannin, and triacetyl resveratrol on AChE and BuChE enzymes were determined spectrophotometrically conforming to Ellman. IC50 values of these enzymes were ranging between 0.95 ± 0.12 and 93.27 ± 8.14 nM for AChE and 5.71 ± 0.77 and 52.10 ± 8.41 nM for BuChE. The inhibitory activities of some chemical compounds such as flavokawain A, hamamelitannin, and triacetyl resveratrol were assessed by performing the molecular docking study in the presence of AChE and BuChE. Also, the features of the ligand-enzyme complex had value of -7.722 kcal/mol for flavokawain A against AChE and -5.530 kcal/mol against BuChE. The molecular docking calculations indicated the probable interactions and their characteristics at an atomic level. Due to the outcomes gained from docking, the affinity of the chemical compounds to the enzymes was considerable. In vitro cell viabilities of flavokawain A, hamamelitannin, and triacetyl resveratrol with various concentrations on SW620, DLD-1, HT29, HCT8, and HCT116 were investigated by MTT assay with Doxorubicin as the control compound.


Subject(s)
Alzheimer Disease , Neoplasms , Humans , Butyrylcholinesterase/metabolism , Molecular Docking Simulation , Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Cholinesterase Inhibitors/chemistry , Resveratrol/pharmacology , Molecular Structure , Alzheimer Disease/drug therapy , Structure-Activity Relationship
6.
Environ Sci Pollut Res Int ; 29(38): 57591-57602, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35355181

ABSTRACT

This study evaluated the nephroprotective effect of kaempferol against cadmium chloride (CdCl2) -induced nephropathy in rats. It also investigated if activation of Nrf2 is a common mechanism of action. Adult male rats ((150 ± 15 g) were divided into 4 groups (n = 8/each) as a control (1% DMSO, orally), control + kaempferol (200 mg/kg, orally), CdCl2 (50 mg/l in drinking water), and CdCl2 + kaempferol (200 mg/kg)-treated rats. All treatments were conducted for 8 weeks. Kaempferol significantly attenuated CdCl2-induced weight loss, reduction in kidney weights, and the injury in the glomeruli, proximal tubules, and distal tubules in the treated rats. It also significantly lowered serum levels of urea and creatinine, increased urine output and urinary creatinine levels and clearance but reduced urinary levels of albumin urinary albumin exertion (UAER), and urinary albumin/creatinine ratio (UACR) in these rats. In parallel, kaempferol downregulated renal levels of cleaved caspase-3 and Bax and unregulated those of Bcl2. In the kidney tissues of the control animals and CdCl2 rats, kaempferol significantly attenuated oxidative stress, inflammation and significantly boosted levels of manganese superoxide dismutase and glutathione. Also, and in both groups, kaempferol suppressed the nuclear levels of NF-κB p65, downregulated Keap1, and stimulated the nuclear activation and protein levels of Nrf2. In conclusion, kaempferol is a potential therapeutic drug to prevent CdCl2-induced nephropathy due to its anti-inflammatory and anti-oxidant effects mediated by suppressing NF- NF-κB p65 and transactivating Nrf2.


Subject(s)
Cadmium Chloride , Kaempferols , Kidney Diseases , NF-kappa B , Animals , Male , Rats , Albumins/metabolism , Antioxidants/metabolism , Cadmium Chloride/pharmacology , Creatinine , Kaempferols/pharmacology , Kelch-Like ECH-Associated Protein 1/metabolism , Kidney , Kidney Diseases/metabolism , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...