Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(5): e0285629, 2023.
Article in English | MEDLINE | ID: mdl-37167227

ABSTRACT

Speech enhancement (SE) reduces background noise signals in target speech and is applied at the front end in various real-world applications, including robust ASRs and real-time processing in mobile phone communications. SE systems are commonly integrated into mobile phones to increase quality and intelligibility. As a result, a low-latency system is required to operate in real-world applications. On the other hand, these systems need efficient optimization. This research focuses on the single-microphone SE operating in real-time systems with better optimization. We propose a causal data-driven model that uses attention encoder-decoder long short-term memory (LSTM) to estimate the time-frequency mask from a noisy speech in order to make a clean speech for real-time applications that need low-latency causal processing. The encoder-decoder LSTM and a causal attention mechanism are used in the proposed model. Furthermore, a dynamical-weighted (DW) loss function is proposed to improve model learning by varying the weight loss values. Experiments demonstrated that the proposed model consistently improves voice quality, intelligibility, and noise suppression. In the causal processing mode, the LSTM-based estimated suppression time-frequency mask outperforms the baseline model for unseen noise types. The proposed SE improved the STOI by 2.64% (baseline LSTM-IRM), 6.6% (LSTM-KF), 4.18% (DeepXi-KF), and 3.58% (DeepResGRU-KF). In addition, we examine word error rates (WERs) using Google's Automatic Speech Recognition (ASR). The ASR results show that error rates decreased from 46.33% (noisy signals) to 13.11% (proposed) 15.73% (LSTM), and 14.97% (LSTM-KF).


Subject(s)
Speech Perception , Speech , Speech Intelligibility , Neural Networks, Computer , Noise , Memory, Long-Term
2.
Sensors (Basel) ; 22(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36236516

ABSTRACT

Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. In vitro fertilization (IVF) is one of those assisted reproduction methods in which the sperm and eggs are combined outside the human body in a specialized environment and kept for growth. Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. The morphology of the embryological components is highly related to the success of the assisted reproduction procedure. In approximately 3-5 days, the embryo transforms into the blastocyst. To prevent the multiple-birth risk and to increase the chance of pregnancy the embryologist manually analyzes the blastocyst components and selects valuable embryos to transfer to the women's uterus. The manual microscopic analysis of blastocyst components, such as trophectoderm, zona pellucida, blastocoel, and inner cell mass, is time-consuming and requires keen expertise to select a viable embryo. Artificial intelligence is easing medical procedures by the successful implementation of deep learning algorithms that mimic the medical doctor's knowledge to provide a better diagnostic procedure that helps in reducing the diagnostic burden. The deep learning-based automatic detection of these blastocyst components can help to analyze the morphological properties to select viable embryos. This research presents a deep learning-based embryo component segmentation network (ECS-Net) that accurately detects trophectoderm, zona pellucida, blastocoel, and inner cell mass for embryological analysis. The proposed method (ECS-Net) is based on a shallow deep segmentation network that uses two separate streams produced by a base convolutional block and a depth-wise separable convolutional block. Both streams are densely concatenated in combination with two dense skip paths to produce powerful features before and after upsampling. The proposed ECS-Net is evaluated on a publicly available microscopic blastocyst image dataset, the experimental segmentation results confirm the efficacy of the proposed method. The proposed ECS-Net is providing a mean Jaccard Index (Mean JI) of 85.93% for embryological analysis.


Subject(s)
Artificial Intelligence , Infertility , Female , Fertilization in Vitro/methods , Humans , Male , Pregnancy , Reproduction , Semen
3.
PLoS One ; 16(12): e0261698, 2021.
Article in English | MEDLINE | ID: mdl-34972109

ABSTRACT

In this era, deep learning-based medical image analysis has become a reliable source in assisting medical practitioners for various retinal disease diagnosis like hypertension, diabetic retinopathy (DR), arteriosclerosis glaucoma, and macular edema etc. Among these retinal diseases, DR can lead to vision detachment in diabetic patients which cause swelling of these retinal blood vessels or even can create new vessels. This creation or the new vessels and swelling can be analyzed as biomarker for screening and analysis of DR. Deep learning-based semantic segmentation of these vessels can be an effective tool to detect changes in retinal vasculature for diagnostic purposes. This segmentation task becomes challenging because of the low-quality retinal images with different image acquisition conditions, and intensity variations. Existing retinal blood vessels segmentation methods require a large number of trainable parameters for training of their networks. This paper introduces a novel Dense Aggregation Vessel Segmentation Network (DAVS-Net), which can achieve high segmentation performance with only a few trainable parameters. For faster convergence, this network uses an encoder-decoder framework in which edge information is transferred from the first layers of the encoder to the last layer of the decoder. Performance of the proposed network is evaluated on publicly available retinal blood vessels datasets of DRIVE, CHASE_DB1, and STARE. Proposed method achieved state-of-the-art segmentation accuracy using a few number of trainable parameters.


Subject(s)
Diabetic Retinopathy/diagnostic imaging , Fundus Oculi , Image Processing, Computer-Assisted/methods , Retina/diagnostic imaging , Retinal Diseases/diagnostic imaging , Retinal Vessels/physiology , Algorithms , Deep Learning , False Positive Reactions , Humans , Hypertension/diagnostic imaging , Neural Networks, Computer , Ophthalmology , Reproducibility of Results , Support Vector Machine
SELECTION OF CITATIONS
SEARCH DETAIL
...