Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
BMC Biotechnol ; 24(1): 28, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38702622

ABSTRACT

Scientists know very little about the mechanisms underlying fish skin mucus, despite the fact that it is a component of the immune system. Fish skin mucus is an important component of defence against invasive infections. Recently, Fish skin and its mucus are gaining interest among immunologists. Characterization was done on the obtained silver nanoparticles Ag combined with Clarias gariepinus catfish epidermal mucus proteins (EMP-Ag-NPs) through UV-vis, FTIR, XRD, TEM, and SEM. Ag-NPs ranged in size from 4 to 20 nm, spherical in form and the angles were 38.10°, 44.20°, 64.40°, and 77.20°, Where wavelength change after formation of EMP-Ag-NPs as indicate of dark brown, the broad band recorded at wavelength at 391 nm. Additionally, the antimicrobial, antibiofilm and anticancer activities of EMP-Ag-NPs was assessed. The present results demonstrate high activity against unicellular fungi C. albicans, followed by E. faecalis. Antibiofilm results showed strong activity against both S. aureus and P. aeruginosa pathogens in a dose-dependent manner, without affecting planktonic cell growth. Also, cytotoxicity effect was investigated against normal cells (Vero), breast cancer cells (Mcf7) and hepatic carcinoma (HepG2) cell lines at concentrations (200-6.25 µg/mL) and current results showed highly anticancer effect of Ag-NPs at concentrations 100, 5 and 25 µg/mL exhibited rounding, shrinkage, deformation and granulation of Mcf7 and HepG2 with IC50 19.34 and 31.16 µg/mL respectively while Vero cells appeared rounded at concentration 50 µg/mL and normal shape at concentration 25, 12.5 and 6.25 µg/ml with IC50 35.85 µg/mL. This study evidence the potential efficacy of biologically generated Ag-NPs as a substitute medicinal agent against harmful microorganisms. Furthermore, it highlights their inhibitory effect on cancer cell lines.


Subject(s)
Biofilms , Catfishes , Metal Nanoparticles , Silver , Metal Nanoparticles/chemistry , Biofilms/drug effects , Biofilms/growth & development , Silver/chemistry , Silver/pharmacology , Animals , Humans , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Vero Cells , Fish Proteins/pharmacology , Fish Proteins/chemistry , Fish Proteins/metabolism , Chlorocebus aethiops , Cell Line, Tumor , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology , Candida albicans/drug effects , Epidermis/metabolism
2.
RSC Adv ; 14(24): 17236, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38808250

ABSTRACT

Expression of concern for 'Cefotaxime incorporated bimetallic silver-selenium nanoparticles: promising antimicrobial synergism, antibiofilm activity, and bacterial membrane leakage reaction mechanism' by Abdelrahman A. Elakraa et al., RSC Adv., 2022, 12, 26603-26619, https://doi.org/10.1039/D2RA04717A.

3.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585884

ABSTRACT

Spermatogonial stem cell (SSC) acquisition of meiotogenetic state during puberty to produce genetically diverse gametes is blocked by drugs collectively referred as 'puberty blocker' (PB). Investigating the impact of PB on juvenile SSC state and function is challenging due to limited tissue access and clinical data. Herein, we report largest clinically annotated juvenile testicular biorepository with all children with gender dysphoria on chronic PB treatment highlighting shift in pediatric patient demography in US. At the tissue level, we report mild-to-severe sex gland atrophy in PB treated children. We developed most extensive integrated single-cell RNA dataset to date (>100K single cells; 25 patients), merging both public and novel (52 month PB-treated) datasets, alongside innovative computational approach tailed for germ cells and evaluated the impact of PB and aging on SSC. We report novel constitutional ranges for each testicular cell type across the entire age spectrum, distinct effects of treatments on prepubertal vs adult SSC, presence of spermatogenic epithelial cells exhibiting post-meiotic-state, irrespective of age, puberty status, or PB treatment. Further, we defined distinct effects of PB and aging on testicular cell lineage composition, and SSC meiotogenetic state and function. Using single cell data from prepubertal and young adult, we were able to accurately predict sexual maturity based both on overall cell type proportions, as well as on gene expression patterns within each major cell type. Applying these models to a PB-treated patient that they appeared pre-pubertal across the entire tissue. This combined with the noted gland atrophy and abnormalities from the histology data raise a potential concern regarding the complete 'reversibility' and reproductive fitness of SSC. The biorepository, data, and research approach presented in this study provide unique opportunity to explore the impact of PB on testicular reproductive health.

4.
Pest Manag Sci ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656697

ABSTRACT

BACKGROUND: In agricultural pest management, especially in combatting the invasive red imported fire ant (RIFA, Solenopsis invicta), significant challenges emerge as a consequence of the constraints of solely depending on chemical insecticides or entomopathogenic nematodes (EPNs). The utilization of chemical insecticides carries environmental and ecological hazards, whereas EPNs, when applied independently, might not offer the immediate effectiveness necessary for adequate RIFA suppression. Acknowledging these hurdles, our study investigates a synergistic method that integrates EPNs with chemical insecticides, aiming to fulfill the urgent demand for more efficient and environmentally friendly pest control solutions. RESULTS: Our evaluation focused on the interaction between the highly pathogenic Steinernema riobrave 7-12 EPN strain and prevalent insecticides, specifically beta-cypermethrin and a mixture of bifenthrin and clothianidin, applied at highly diluted recommended concentrations. The findings revealed a notable increase in RIFA mortality rates when EPNs and these insecticides were used together, outperforming the results achieved with each method individually. Remarkably, this enhanced efficacy was especially evident at lower concentrations of the bifenthrin-clothianidin mixture, indicating a valuable approach to minimizing reliance on chemical insecticides in agriculture. Furthermore, the high survival rates of EPNs alongside the tested insecticides indicate their compatibility and potential for sustained use in integrated pest management programs. CONCLUSION: Our research underscores the effectiveness of merging EPNs with chemical insecticides as a powerful and sustainable strategy for RIFA management. This combined approach not only meets the immediate challenges of pest control in agricultural settings, but also supports wider environmental objectives by reducing the dependency on chemical insecticides. © 2024 Society of Chemical Industry.

5.
BMC Microbiol ; 24(1): 78, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459502

ABSTRACT

BACKGROUND AND OBJECTIVES: Microbial cells capability to tolerate the effect of various antimicrobial classes represent a major worldwide health concern. The flexible and multi-components nanocomposites have enhanced physicochemical characters with several improved properties. Thus, different biological activities of biosynthesized starch/silver-selenium nanocomposite (St/Ag-Se NC) were assessed. METHODOLOGY: The St/Ag-Se NC was biosynthesized using Cladosporium cladosporioides CBS 174.62 (C. cladosporioides) strain. The shape and average particle size were investigated using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), respectively. On the other hand, the St/Ag-Se NC effect on two cancer cell lines and red blood cells (RBCs) was evaluated and its hydrogen peroxide (H2O2) scavenging effect was assessed. Moreover, its effects on various microbial species in both planktonic and biofilm growth forms were examined. RESULTS: The St/Ag-Se NC was successfully biosynthesized with oval and spherical shape and a mean particle diameter of 67.87 nm as confirmed by the HR-TEM analysis. St/Ag-Se NC showed promising anticancer activity toward human colorectal carcinoma (HCT-116) and human breast cancer (MCF-7) cell lines where IC50 were 21.37 and 19.98 µg/ml, respectively. Similarly, little effect on RBCs was observed with low nanocomposite concentration. As well, the highest nanocomposite H2O2 scavenging activity (42.84%) was recorded at a concentration of 2 mg/ml. Additionally, Staphylococcus epidermidis (S. epidermidis) ATCC 12,228 and Candida albicans (C. albicans) ATCC 10,231 were the highly affected bacterial and fungal strains with minimum inhibitory concentrations (MICs) of 18.75 and 50 µg/ml, respectively. Moreover, the noticeable effect of St/Ag-Se NC on microbial biofilm was concentration dependent. A high biofilm suppression percentage, 87.5% and 68.05%, were recorded with S. epidermidis and Staphylococcus aureus (S. aureus) when exposed to 1 mg/ml and 0.5 mg/ml, respectively. CONCLUSION: The biosynthesized St/Ag-Se NC showed excellent antioxidant activity, haemocompatibility, and anti-proliferative effect at low concentrations. Also, it exhibited promising antimicrobial and antibiofilm activities.


Subject(s)
Anti-Infective Agents , Cladosporium , Metal Nanoparticles , Nanocomposites , Selenium , Humans , Silver/pharmacology , Silver/chemistry , Selenium/pharmacology , Starch/chemistry , Hydrogen Peroxide/pharmacology , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Metal Nanoparticles/chemistry , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
6.
JCO Glob Oncol ; 10: e2300372, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38547440

ABSTRACT

PURPOSE: Early-onset colorectal cancer (EOCRC) is a rising health problem. The incidence of EOCRC has increased over the past 2 decades all over the world. Reports from Egypt since the 1990s have reported a higher incidence among young populations with no identifiable risk factors. The aim of this study was to assess EOCRC in Egypt regarding incidence, characteristics, treatment pattern, and survival compared with average age onset and elderly patients. MATERIALS AND METHODS: This was a retrospective, record-based, cohort study combining data from four different cancer centers in Egypt. We grouped patients according to age into three categories: the EOCRC group for patients age ≤45 years and the average age onset and elderly cancer group (for patients age ≥65 years). RESULTS: The study included 1,310 patients with histopathologically proven colorectal cancer, representing four different geographical areas in Egypt. Patients with EOCRC represented 42.4% of the study population. Female patients were 50.6% among the EOCRC group and 52.5% among the average age group. Rectal tumors were significantly higher in EOCRC (54.7% v 40.6%; P < .001). There was no significant difference between both groups regarding the tumor stage at presentation, obstruction, or presence of metastases at presentation. Patients with EOCRC had a significantly higher rate of peritoneum/adnexa metastases than the average age ones (12.3% in EOCRC v 6.9% in the average age group; P < .001). No statistically significant differences between EOCRC and average age groups in both disease-free survival and overall survival were reported. CONCLUSION: A comprehensive framework for the study of EOCRC is required in Egypt as well as a genomic analysis to identify possible underlying genetic alterations responsible for the high incidence of EOCRC.


Subject(s)
Colorectal Neoplasms , Aged , Humans , Female , Middle Aged , Cohort Studies , Egypt/epidemiology , Retrospective Studies , Disease-Free Survival , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/therapy
7.
BMC Cardiovasc Disord ; 24(1): 152, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481132

ABSTRACT

BACKGROUND: Hypertension may cause target organ damage (TOD). Target blood pressure (BP) management may not be appropriate in some conditions. AIM: We aim to assess the impact of targeted BP management in severe hypertension on renal TOD. PATIENTS & METHODS: This is a prospective cohort study involving patients admitted due to severe hypertension (BP > 180/120) associated with any symptoms. The study involved patients referred to the ICU in our tertiary center during the period between August 2017 and February 2018. All patients underwent target BP treatment according to recent guidelines. Hs-Troponin T (hs-TNT) and serum creatinine (s.creat) were measured in all patients on admission and 24 h later. Patients were divided into Group A (with initial normal hs-TNT) and Group B (with initial high hs-TNT). The main outcome was in-hospital renal-related morbidity (including renal failure). RESULTS: Four hundred seventy consecutive patients with hypertensive crises were involved in the study. Group B had a significantly higher incidence of in-hospital mortality (4 patients) and renal TOD (acute renal dysfunction) than Group A (P value = 0.001 and 0.000 respectively). There was a significant difference between initial s.creat on admission and follow-up s.creat values in Group B with significant elevation of their s.creat on the following 24 h (P = 0.002), while this difference is insignificant in Group A (P = 0.34). There was a significant positive correlation between hs-TNT and the follow-up s.creat (P = 0.004). CONCLUSION: In severe HTN, hs-TNT may be elevated due to marked afterload. Patients with severe HTN and high hs-TNT have higher s.creat values, which are associated with an increased risk of renal failure and in-hospital mortality if their BP decreases acutely to the guideline-target BP. Using biomarkers during the management of emergency HTN should be considered before following clinical guidelines. However, our findings do underscore the potential utility of hs-TNT as an indicator for risk stratification in patients with severe or emergency HTN.


Subject(s)
Hypertension , Renal Insufficiency , Humans , Prognosis , Prospective Studies , Biomarkers , Hypertension/diagnosis , Hypertension/drug therapy , Troponin T
8.
Appl Biochem Biotechnol ; 196(1): 85-98, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37099124

ABSTRACT

New and creative methodologies for the fabrication of silver nanoparticles (Ag-NPs), which are exploited in a wide range of consumer items, are of significant interest. Hence, this research emphasizes the biological approach of Ag-NPs through Egyptian henna leaves (Lawsonia inermis Linn.) extracts and analysis of the prepared Ag-NPs. Plant extract components were identified by gas chromatography mass spectrometry (GC-mass). The analyses of prepared Ag-NPs were carried out through UV-visible (UV-Vis), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and Fourier transform infrared (FTIR) analysis. UV-Vis reveals that Ag-NPs have a maximum peak at 460 nm in visible light. Structural characterization recorded peaks that corresponded to Bragg's diffractions for silver nano-crystal, with average crystallite sizes varying from 28 to 60 nm. Antibacterial activities of Ag-NPs were examined, and it is observed that all microorganisms are very sensitive to biologically synthesized Ag-NPs.


Subject(s)
Lawsonia Plant , Metal Nanoparticles , Urinary Tract Infections , Silver/pharmacology , Silver/chemistry , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , X-Ray Diffraction , Plant Extracts/pharmacology , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests
9.
J Microbiol Biotechnol ; 34(1): 207-223, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-37940165

ABSTRACT

The efficacy of 40 bacterial isolates obtained from hot spring water samples to produce cellulase enzymes was investigated. As a result, the strain Bacillus subtilis F3, which was identified using traditional and molecular methods, was selected as the most potent for cellulase production. Optimization was carried out using one-factor-at-a-time (OFAT) and BOX-Behnken Design to detect the best conditions for the highest cellulase activity. This was accomplished after an incubation period of 24 h at 45°C and pH 8, with an inoculum size of 1% (v/v), 5 g/l of peptone as nitrogen source, and 7.5 g/l of CMC. Moreover, the best concentration of ammonium sulfate for cellulase enzyme precipitation was 60% followed by purification using a dialysis bag and Sephadex G-100 column chromatography to collect the purified enzyme. The purified cellulase enzyme was characterized by 5.39-fold enrichment, with a specific activity of 54.20 U/mg and a molecular weight of 439 kDa. There were 15 amino acids involved in the purified cellulase, with high concentrations of 160 and 100 mg/l for glycine and proline respectively. The highest stability and activity of the purified cellulase was attained at pH 7 and 50°C in the presence of 150 ppm of CaCl2, NaCl, and ZnO metal ions. Finally, the biopolishing activity of the cellulase enzyme, as indicated by weight loss percentages of the cotton fabric, was dependent on concentration and treatment time. Overall, the thermotolerant B. subtilis F3 strain has the potential to provide highly stable and highly active cellulase enzyme for use in biopolishing of cotton fabrics.


Subject(s)
Bacillus subtilis , Cellulase , Bacillus subtilis/metabolism , Cellulase/metabolism , Textiles , Hydrogen-Ion Concentration , Enzyme Stability , Temperature
10.
Article in English | MEDLINE | ID: mdl-37751009

ABSTRACT

Colorectal cancer (CRC) is the third cancer among the known causes of cancer that impact people. Although CRC drug options are imperfect, primary detection of CRC can play a key role in treating the disease and reducing mortality. Cancer tissues show many molecular markers that can be used as a new way to advance therapeutic methods. Nanotechnology includes a wide range of nanomaterials with high diagnostic and therapeutic power. Several nanomaterials and nanoformulations can be used to treat cancer, especially CRC. In this review, we discuss recent insights into nanotechnology in colorectal cancer.

11.
Sci Rep ; 13(1): 14237, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37648713

ABSTRACT

Treatment with 5-fluorouracil (5-FU) based therapy is still used for colorectal cancer (CRC). Epigenetics has become a focus of study in cancer because of its reversibility besides its known regulatory functions. In this study, we will monitor the change in microRNAs (miRNAs) levels with 5-FU-based therapy at baseline and after 3 and 6 months of treatment to be correlated with their prognostic potential. The expression levels of 5 miRNAs, namely miRNA223-3p, miRNA20a-5p, miRNA17-5p, miRNA19a-3p, and miRNA7-5p, were measured in the peripheral blood of 77 CRC patients, along with the expression of 3 proteins PTEN, ERK, and EGFR. At baseline, CRC patients had significantly higher levels of circulating miRNAs than healthy controls. This level was reduced after 3 months of 5-FU-based therapy, then increased after 6 months significantly in responder patients compared to non-responders. MiRNA19a-3p showed that significant pattern of change in the subgroups of patients with high ERK, EGFR, and PTEN protein levels, and its 6 months level after 5-FU-based therapy showed significance for the hazard of increased risk of disease recurrence and progression.


Subject(s)
Circulating MicroRNA , Colorectal Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Fluorouracil/therapeutic use , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , ErbB Receptors/genetics
12.
Biotechnol J ; 18(12): e2300301, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37615241

ABSTRACT

Recently, agricultural management innovation has incorporated engineered nanoparticles. The current investigation was carried out to produce magnesium oxide nanoparticles (MgONPs) for the first time applying S. cerevisiae extract. FTIR, XRD, HRTEM, and zeta potential analysis were used to characterize the MgONPs. The FTIR data show that the bioactive substances reduce and cap the synthesized MgONPs. The crystalline metallic MgONPs had four significant peaks in the XRD pattern. The size and form of MgONPs were validated by TEM, which exhibited spherical structures with an average size of 27 nm. The effect of various dosages of MgONPs administered to the cowpea (Vigna unguiculata L.) plant on all in vitro parameters was shown to be significant in the study. The concentration 200 ppm was the most significant treatment which increased shoot length, shoot dry-weight and root dry-weight by 27.35%, 45.09%, and 31.91% when compared with the untreated cowpea plants. MgONPs significantly increased photosynthetic pigments, with 150 ppm treatment significantly increasing soluble proteins and carbohydrates. MgONPs effectively treated cowpea C. maculatus, with dose and time-dependent insecticidal activity. MgONPs death rates varied by 82.66% and 100% on fifth day. Biochemical and histopathological studies of rats were investigated. Rats treated with MgONPs showed higher GOT, GPT, Urea levels, but lower creatinine, indicating significant differences. MgONPs-treated rats' liver showed mild to moderate histopathologic changes, including portal blood vessel congestion, lymphocytic cholangitis, and degenerative changes. MgONPs has the potential to improve cowpea development outcomes and suppress grain insects (C. maculatus).


Subject(s)
Coleoptera , Metal Nanoparticles , Vigna , Animals , Rats , Magnesium Oxide/pharmacology , Magnesium Oxide/chemistry , Saccharomyces cerevisiae , Metal Nanoparticles/chemistry
13.
Sci Rep ; 13(1): 7268, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142616

ABSTRACT

In our paper, we have synthesized modified PEA and alkyd resin by replacing the new source of polyol (SDEA) which was confirmed by different analyses such as IR, and 1HNMR spectra. A series of conformal, novel, low-cost, and eco-friendly hyperbranched modified alkyd and PEA resins were fabricated with bio ZnO, CuO/ZnO) NPs through an ex-situ method for mechanical and anticorrosive coatings. The synthesized biometal oxides NPs and its composite modified alkyd and PEA were confirmed by FTIR, SEM with EDEX, TEM, and TGA, and can be stably dispersed into modified alkyd and PEA resins at a low weight fraction of 1%. The nanocomposite coating was also subjected to various tests to determine their surface adhesion, which ranged from (4B-5B), physico-mechanical characteristics such as scratch hardness, which improved from < 1.5 to > 2 kg, gloss (100-135) Specific gravity (0.92-0.96) and also chemical resistance test which passed for water, acid, and solvent except alkali, was poor because of the hydrolyzable ester group in the alkyd and PEA resins. The anti-corrosive features of the nanocomposites were investigated through salt spray tests in 5 wt % NaCl. The results indicate that well-dispersed bio ZnO and CuO/ZnO) NPs (1.0%) in the interior of the hyperbranched alkyd and PEA matrix improve the durability and anticorrosive attributes of the composites, such as degree of rusting, which ranged from 5 to 9, blistering size ranged from 6 to 9, and finally, scribe failure, which ranged from 6 to 9 mm. Thus, they exhibit potential applications in eco- friendly surface coatings. The anticorrosion mechanisms of the nanocomposite alkyd and PEA coating were attributed to the synergistic effect of bio ZnO and (CuO/ZnO) NPs and the prepared modified resins are highly rich in nitrogen elements, which might be regarded as a physical barrier layer for steel substrates.

14.
Biotechnol Genet Eng Rev ; : 1-19, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36861663

ABSTRACT

Toluene and other monoaromatic compounds are released into the environment particularly saline habitats due to the inappropriate disposal methods of petroleum products. Studying the bio-removal strategy is required to clean up these hazardous hydrocarbons that threaten all ecosystem life using halophilic bacteria with higher biodegradation efficiency of monoaromatic compounds as a sole carbon and energy source. Therefore, sixteen pure halophilic bacterial isolates were obtained from saline soil of Wadi An Natrun, Egypt, which have the ability to degrade toluene and consume it as the only source of carbon and energy. Amongst these isolates, isolate M7 exhibited the best growth with considerable properties. This isolate was selected as the most potent strain and identified based on phenotypic and genotypic characterizations. The strain M7 was belonging to Exiguobacterium genus and founded to be closely matched to the Exiguobacterium mexicanum with a similarity of 99%. Using toluene as sole carbon source, strain M7 showed good growth at a wide range temperature degree (20-40ºC), pH (5-9), and salt concentrations (2.5-10%, w/v) with optimal growth conditions at 35ºC, pH 8, and 5%, respectively. The biodegradation ratio of toluene was estimated at above optimal conditions and analyzed using Purge-Trap GC-MS. The results showed that strain M7 has the potentiality to degraded 88.32% of toluene within greatly short time (48 h). The current study findings support the potential ability to use strain M7 as a biotechnological tool in many applications such as effluent treatment and toluene waste management.

15.
Arch Microbiol ; 205(4): 128, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36944830

ABSTRACT

The utilization of living organisms for the creation of inorganic nanoscale particles is a potential new development in the realm of biotechnology. An essential milestone in the realm of nanotechnology is the process of creating dependable and environmentally acceptable metallic nanoparticles. Due to its increasing popularity and ease, use of ambient biological resources is quickly becoming more significant in this field of study. The phrase "green nanotechnology" has gained a lot of attention and refers to a variety of procedures that eliminate or do away with hazardous compounds to repair the environment. Green nanomaterials can be used in a variety of biotechnological sectors such as medicine and biology, as well as in the food and textile industries, wastewater treatment and agriculture field. The construction of an updated level of knowledge with utilization and a study of the ambient biological systems that might support and revolutionize the creation of nanoparticles (NPs) are presented in this article.


Subject(s)
Metal Nanoparticles , Nanostructures , Nanotechnology/methods , Biotechnology/methods
16.
Asian Pac J Cancer Prev ; 24(3): 1027-1036, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36974558

ABSTRACT

INTRODUCTION: Colorectal cancer (CRC) is a major health problem Worldwide, Egypt shows a high rate of early CRC in the world as 35% of 1,600 Egyptian CRC patients were under 40 with threefold increased risk of death within 5 years. DNA methylation-based biomarkers as methylated Septin9 (mSEPT9) has a promising role for detecting CRC. As well as set of nuclear matrix proteins associated with changes in the nuclear structure/architecture. detection of these nuclear proteins resulted in identification of biomarkers that are specific for colon cancer. Particular interest has been placed on colon cancer specific antigen-2(CCSA-2). METHODS: A total of 30 newly diagnosed CRC patients, 7 colonic adenoma patients, and 15 age- and sex-matched control subjects were recruited in this study. Plasma mSEPT9was assayed by Epi procolon kit, CCSA-2 by ELISA and, Occult blood in stool by Guaiac-based fecal occult blood test. The level of Colon Cancer mSEPT9 and CCSA-2 were carried on CRC patients both preoperatively and three months postoperatively. RESULTS: mSEPT9 has 96.7% sensitivity and 95.5% specificity in differentiating colorectal cancer patients from non-malignant cases. Also, our study showed a highly statistically significant difference between the pre and three months postoperative expression of mSEPT9 in colorectal cancer as there was a dramatically decrease in the expression of mSEPT9 postoperatively (p value < 0.001). The CCSA-2 at the cutoff level of >1.43 would provide 93.3% sensitivity and 90.9% specificity in differentiation between malignant and non-malignant cases. Also, the study showed that there is a statistically significant difference between colorectal cancer patients preoperatively and postoperatively according to CCSA-2 with dramatic decrease in its level postoperatively (p value > 0.001). CONCLUSION: The plasma SEPT9 DNA methylation level and Serum CCSA-2 could be used as promising non-invasive methods for observing the CRC patients postsurgical response to predict the occurrence of complete remission or relapses.


Subject(s)
Antigens, Neoplasm , Colorectal Neoplasms , Septins , Humans , Biomarkers, Tumor/genetics , Clinical Relevance , Colorectal Neoplasms/pathology , DNA Methylation , Early Detection of Cancer , Neoplasm Recurrence, Local/genetics , Septins/genetics , Antigens, Neoplasm/genetics
17.
Int J Biol Macromol ; 224: 871-880, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36283561

ABSTRACT

This study aims to fully exploit the natural compound; bee venom (BV) as a substance that can kill and inhibit the growth of microbes and viruses. For this target, BV was loaded onto a safe, natural, and economically inexpensive polymer; chitosan (Ch) in its nano-size form prepared using ionic gelation method in the presence of chemical crosslinking agent (sodium tripolyphosphate; TPP). The findings illustrated that chitosan nanoparticles (ChNPs) were prepared thru this method and exhibited spherical shape and average hydrodynamic size of 202 nm with a polydispersity index (PDI = 0.44). However, the size was increased to 221 nm with PDI (0.37) when chitosan nanoparticles were loaded with BV (ChNC). In addition, the particles of BV appeared as a core and chitosan nanoparticles as a shell implying the successful preparation of nanocomposite (ChNC). Encapsulation of BV into ChNPs with significantly small size distribution and good stability that protect these formed nanocomposites from agglomeration. The cytopathic effect (CPE) inhibition assay was used to identify potential antivirals for Middle East respiratory syndrome coronavirus (MERS-CoV). The response of the dose study was designed to influence the range of effectiveness for the chosen antiviral, i.e., the 50 % inhibitory concentration (IC50), as well as the range of cytotoxicity (CC50). However, our results indicated that crude BV had mild anti-MERS-COV with selective index (SI = 4.6), followed by ChNPs that exhibited moderate anti-MERS-COV with SI = 8.6. Meanwhile. The nanocomposite of ChNC displayed a promising anti-MERS-COV with SI = 12.1. Additionally, the synthesized nanocomposite (ChNC) had greater antimicrobial activity against both Gram-positive and Gram-negative bacteria when compared with ChNPs, BV or the utilized model drug.


Subject(s)
Bee Venoms , Chitosan , Middle East Respiratory Syndrome Coronavirus , Nanoparticles , Chitosan/chemistry , Anti-Bacterial Agents , Gram-Negative Bacteria , Gram-Positive Bacteria , Nanoparticles/chemistry , Drug Resistance, Multiple , Particle Size
18.
Appl Biochem Biotechnol ; 195(1): 467-485, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36087233

ABSTRACT

Mycosynthesis of nanoparticle (NP) production is a potential ecofriendly technology for large scale production. In the present study, copper oxide nanoparticles (CuONPs) have been synthesized from the live cell filtrate of the fungus Penicillium chrysogenum. The created CuONPs were characterized via several techniques, namely Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). Furthermore, the biosynthesized CuONPs were performed against biofilm forming Klebsiella oxytoca ATCC 51,983, Escherichia coli ATCC 35,218, Staphylococcus aureus ATCC 25,923, and Bacillus cereus ATCC 11,778. The anti-bacterial activity result was shown with the zone of inhibition determined to be 14 ± 0.31 mm, 16 ± 0.53 mm, 11 ± 0.57 mm, and 10 ± 0.57 mm respectively. Klebsiella oxytoca and Escherichia coli were more susceptible to CuONPs with minimal inhibitory concentration (MIC) values 6.25 and 3.12 µg/mL, respectively, while for Staphylococcus aureus and Bacillus cereus, MIC value was 12.5 and 25 µg/mL, respectively. The minimum biofilm inhibition concentration (MBIC) result was more evident, that the CuONPs have excellent anti-biofilm activity at sub-MIC levels reducing biofilm formation by 49% and 59% against Klebsiella oxytoca and Escherichia coli, while the results indicated that the MBIC of CuONPs on Bacillus cereus and Staphylococcus aureus was higher than 200 µg/mL and 256 µg/mL, respectively, suggesting that these CuONPs could not inhibit mature formatted biofilm of Bacillus cereus and Staphylococcus aureus in vitro. Overall, all the results were clearly confirmed that the CuONPs have excellent anti-biofilm ability against Klebsiella oxytoca and Escherichia coli. The prepared CuONPs offer a smart approach for biomedical therapy of resistant microorganisms because of its promoted antimicrobial action, but only for specified purposes.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Copper/pharmacology , Copper/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus , Microbial Sensitivity Tests , Escherichia coli , Biofilms , Oxides , Spectroscopy, Fourier Transform Infrared , Plant Extracts/chemistry
19.
Appl Biochem Biotechnol ; 195(2): 1158-1183, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36342621

ABSTRACT

The World Health Organization (WHO) reports that the emergence of multidrug-resistant and the slow advent of novel and more potent antitumor and antimicrobial chemotherapeutics continue to be of the highest concern for human health. Additionally, the stability, low solubility, and negative effects of existing drugs make them ineffective. Studies into alternative tactics to tackle such tenacious diseases was sparked by anticancer and antibacterial. Silver (Ag) and gold (Au) nanoparticles (NPs) were created from Trichoderma saturnisporum, the much more productive fungal strain. Functional fungal extracellular enzymes and proteins carried out the activities of synthesis and capping of the generated nano-metals. Characterization was done on the obtained Ag-NPs and Au-NPs through UV-vis, FTIR, XRD, TEM, and SEM. Additionally, versus methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa, and Klebsiella pneumoniae, the antibacterial activities of Ag-NPs and Au-NPs were assessed. In particular, the Ag-NPs were more effective against pathogenic bacteria than Au-NPs. Furthermore, antibiofilm study that shown Au-NPs had activity more than Ag-NPs. Interestingly, applying the DPPH procedure, these noble metallic NPs had antioxidant activity, in which the IC50 for Ag-NPs and Au-NPs was 73.5 µg/mL and 190.0 µg/mL, respectively. According to the cytotoxicity evaluation results, the alteration in the cells was shown as loss of their typical shape, partial or complete loss of monolayer, granulation, shrinking, or cell rounding with IC50 for normal Vero cell were 693.68 µg/mL and 661.24 µg/mL, for Ag-NPs and Au-NPs, respectively. While IC50 for cancer cell (Mcf7) was 370.56 µg/mL and 394.79 µg/mL for Ag-NPs and Au-NPs, respectively. Ag-NPs and Au-NPs produced via green synthesis have the potential to be employed in the medical industry as beneficial nanocompounds.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Silver/pharmacology , Silver/chemistry , Gold/pharmacology , Gold/chemistry , Methicillin-Resistant Staphylococcus aureus/metabolism , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms
20.
Biomol Concepts ; 14(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38230658

ABSTRACT

Diabetes mellitus is a metabolic disorder described by compromised insulin synthesis or resistance to insulin inside the human body. Diabetes is a persistent metabolic condition defined by elevated amounts of glucose in the bloodstream, resulting in a range of potential consequences. The main purpose of this study was to find out how biosynthesized copper oxide nanoparticles (CuONPs) affect the blood sugar levels of diabetic albino rats induced by streptozotocin (STZ). In the current study, CuONPs were successfully biosynthesized using Saccharomyes cervisiae using an eco-friendly method. Characterization results revealed that biosynthesized CuONPs appeared at 376 nm with a spherical shape with sizes ranging from 4 to 47.8 nm. Furthermore, results illustrated that administration of 0.5 and 5 mg/kg CuONP in diabetic rats showed a significant decrease in blood glucose levels accompanied by elevated insulin levels when compared to the diabetic control group; however, administration of 0.5 mg/kg is the best choice for diabetic management. Furthermore, it was found that the group treated with CuONPs exhibited a noteworthy elevation in the HDL-C level, along with a depletion in triglycerides, total cholesterol, LDL-C, and VLDL-cholesterol levels compared to the diabetic control group. This study found that administration of CuONPs reduced hyperglycemia and improved pancreatic function as well as dyslipidemia in diabetic rats exposed to STZ, suggesting their potential as a promising therapeutic agent for diabetes treatment.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Humans , Rats , Animals , Hypoglycemic Agents/therapeutic use , Streptozocin/therapeutic use , Blood Glucose , Diabetes Mellitus, Experimental/drug therapy , Copper/therapeutic use , Insulin/metabolism , Oxides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...