Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cancers (Basel) ; 15(23)2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38067315

ABSTRACT

Prostate cancer (PCa) often becomes drug-treatment-resistant, posing a significant challenge to effective management. Although initial treatment with androgen deprivation therapy can control advanced PCa, subsequent resistance mechanisms allow tumor cells to continue growing, necessitating alternative approaches. This study delves into the specific metabolic dependencies of different PCa subtypes and explores the potential synergistic effects of combining androgen receptor (AR) inhibition (ARN with mitochondrial complex I inhibition (IACS)). We examined the metabolic behaviors of normal prostate epithelial cells (PNT1A), androgen-sensitive cells (LNCaP and C4-2), and androgen-independent cells (PC-3) when treated with ARN, IACS, or a combination. The results uncovered distinct mitochondrial activities across PCa subtypes, with androgen-dependent cells exhibiting heightened oxidative phosphorylation (OXPHOS). The combination of ARN and IACS significantly curbed cell proliferation in multiple PCa cell lines. Cellular bioenergetics analysis revealed that IACS reduced OXPHOS, while ARN hindered glycolysis in certain PCa cells. Additionally, galactose supplementation disrupted compensatory glycolytic mechanisms induced by metabolic reprogramming. Notably, glucose-deprived conditions heightened the sensitivity of PCa cells to mitochondrial inhibition, especially in the resistant PC-3 cells. Overall, this study illuminates the intricate interplay between AR signaling, metabolic adaptations, and treatment resistance in PCa. The findings offer valuable insights into subtype-specific metabolic profiles and propose a promising strategy to target PCa cells by exploiting their metabolic vulnerabilities.

2.
Int J Mol Sci ; 24(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37569712

ABSTRACT

Prostate-specific membrane antigen (PSMA)-based imaging improved the detection of primary, recurrent and metastatic prostate cancer. However, in certain patients, a low PSMA surface expression can be a limitation for this promising diagnostic tool. Pharmacological induction of PSMA might be useful to further improve the detection rate of PSMA-based imaging. To achieve this, we tested dutasteride (Duta)-generally used for treatment of benign prostatic enlargement-and lovastatin (Lova)-a compound used to reduce blood lipid concentrations. We aimed to compare the individual effects of Duta and Lova on cell proliferation as well as PSMA expression. In addition, we tested if a combination treatment using lower concentrations of Duta and Lova can further induce PSMA expression. Our results show that a treatment with ≤1 µM Duta and ≥1 µM Lova lead to a significant upregulation of whole and cell surface PSMA expression in LNCaP, C4-2 and VCaP cells. Lower concentrations of Duta and Lova in combination (0.5 µM Duta + 0.5 µM Lova or 0.5 µM Duta + 1 µM Lova) were further capable of enhancing PSMA protein expression compared to a single compound treatment using higher concentrations in all tested cell lines (LNCaP, C4-2 and VCaP).


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Dutasteride/pharmacology , Dutasteride/metabolism , Dutasteride/therapeutic use , Prostate/pathology , Lovastatin/pharmacology , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Prostatic Neoplasms/metabolism , Prostate-Specific Antigen/metabolism , Cell Line, Tumor
3.
Int J Mol Sci ; 24(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36901894

ABSTRACT

Cell therapies and tissue engineering approaches using smooth muscle cells (SMCs) may provide treatment alternatives for end-stage lower urinary tract dysfunction (ESLUTD). Myostatin, a negative regulator of muscle mass, is a promising target to improve muscle function through tissue engineering. The ultimate goal of our project was to investigate the expression of myostatin and its potential impact in SMCs derived from healthy pediatric bladders and pediatric ESLUTD patients. Human bladder tissue samples were evaluated histologically, and SMCs were isolated and characterized. The proliferation of SMCs was assessed by WST-1 assay. The expression pattern of myostatin, its pathway and the contractile phenotype of the cells were investigated at gene and protein levels by real-time PCR, flow cytometry, immunofluorescence, WES and gel contraction assay. Our results show that myostatin is expressed in human bladder smooth muscle tissue and in isolated SMCs at gene and protein levels. A higher expression of myostatin was detected in ESLUTD-derived compared to control SMCs. Histological assessment of bladder tissue confirmed structural changes and decreased muscle-to-collagen ratios in ESLUTD bladders. A decrease in cell proliferation and in the expression of key contractile genes and proteins, α-SMA, calponin, smoothelin and MyH11, as well as a lower degree of in vitro contractility was observed in ESLUTD-derived compared to control SMCs. A reduction in the myostatin-related proteins Smad 2 and follistatin, and an upregulation in the proteins p-Smad 2 and Smad 7 were observed in ESLUTD SMC samples. This is the first demonstration of myostatin expression in bladder tissue and cells. The increased expression of myostatin and the changes in the Smad pathways were observed in ESLUTD patients. Therefore, myostatin inhibitors could be considered for the enhancement of SMCs for tissue engineering applications and as a therapeutic option for patients with ESLUTD and other smooth muscle disorders.


Subject(s)
Myostatin , Urinary Bladder , Humans , Child , Myostatin/metabolism , Muscle, Smooth/pathology , Myocytes, Smooth Muscle/metabolism , Muscle Contraction , Cells, Cultured
4.
Int J Mol Sci ; 24(4)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36835106

ABSTRACT

Spinal dysraphism, most commonly myelomeningocele, is the typical cause of a neurogenic lower urinary tract dysfunction (NLUTD) in childhood. The structural changes in the bladder wall in spinal dysraphism already occur in the fetal period and affect all bladder wall compartments. The progressive decrease in smooth muscle and the gradual increase in fibrosis in the detrusor, the impairment of the barrier function of the urothelium, and the global decrease in nerve density, lead to severe functional impairment characterized by reduced compliance and increased elastic modulus. Children present a particular challenge, as their diseases and capabilities evolve with age. An increased understanding of the signaling pathways involved in lower urinary tract development and function could also fill an important knowledge gap at the interface between basic science and clinical implications, leading to new opportunities for prenatal screening, diagnosis, and therapy. In this review, we aim to summarize the evidence on structural, functional, and molecular changes in the NLUTD bladder in children with spinal dysraphism and discuss possible strategies for improved management and for the development of new therapeutic approaches for affected children.


Subject(s)
Neural Tube Defects , Spinal Dysraphism , Urinary Bladder, Neurogenic , Pregnancy , Female , Humans , Child , Urinary Bladder , Urinary Bladder, Neurogenic/etiology , Urinary Bladder, Neurogenic/therapy , Urodynamics
5.
Front Cell Dev Biol ; 10: 1007265, 2022.
Article in English | MEDLINE | ID: mdl-36268506

ABSTRACT

Autologous cell-based tissue engineering has been proposed as a treatment option for end stage lower urinary tract dysfunction (ESLUTD). However, it is generally accepted that cells isolated from patient bladders retain the pathological properties of their tissue of origin and therefore need to be improved before they can serve as a cell source for tissue engineering applications. We hypothesize that human three-dimensional (3D) microtissues of detrusor smooth muscle cells (SMCs) are valuable ex vivo disease models and potent building blocks for bladder tissue engineering. Detrusor SMCs isolated from bladder wall biopsies of pediatric ESLUTD patients and healthy controls were expanded and cultured into 3D microtissues. Gene and protein analyses were performed to explore the effect of microtissue formation on SMC viability, contractile potential, bladder wall specific extracellular matrix (ECM) composition and mediators of ECM remodeling. Through microtissue formation, remodeling and intensified cell-cell interactions, the ESLUTD SMCs lost their characteristic disease phenotype. These microtissues exhibited similar patterns of smooth muscle related contractile proteins and essential bladder wall-specific ECM components as microtissues from healthy control subjects. Thus, the presented data suggest improved contractile potential and ECM composition in detrusor SMC microtissues from pediatric ESLUTD patients. These findings are of great relevance, as 3D detrusor SMC microtissues might be an appropriate cell source for autologous cell-based bladder tissue engineering.

6.
J Cancer Res Clin Oncol ; 148(12): 3351-3360, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35751683

ABSTRACT

BACKGROUND: Apalutamide (APA) is a next-generation androgen receptor antagonist for the treatment of advanced prostate cancer. We have previously shown that upregulation of autophagy is one of the mechanisms by which prostate cancer (PC) cells survive APA anti-tumor treatment in vitro. Therefore, we investigated the characteristics of the autophagic response to APA treatment, alone and in combination with autophagy inhibition, in an in vivo model. METHODS: Tumor cells were injected into previously castrated nude mice. Four groups of mice bearing LNCaP xenografts were treated with daily intraperitoneal (i.p.) injections of vehicle (control), APA (10 mg/kg), APA (10 mg/kg) + Chl (Chloroquine, 10 mg/kg) or Chl (10 mg/kg). The animals of each treatment group (3/treatment) were kept for the duration of 2 and 3 weeks. At the end of the experiments, the animals were sacrificed and all samples assessed for tumor weight and size, histological analysis, immunoblotting (WES) and immunofluorescence. RESULTS: The tumor weight was significantly reduced in mice treated with APA + Chl (203.2 ± 5.0, SEM, P = 0.0066) compared to vehicle control (380.4 ± 37.0). Importantly, the combined treatment showed a higher impact on tumor weight than APA (320.4 ± 45.5) or Chl (337.9 ± 35) alone. The mice treated with the combination of APA + Chl exhibited a reduced expression of ATG5 (autophagy-related five protein), Beclin 1 and LC3 punctuations and an increase in P62 as visualized by immunofluorescence and WES. In addition, Ki-67 nuclear staining was detected in all samples however reduced in APA + Chl (58%) compared to vehicle control (100%). The reduction in Ki-67 protein was associated with an increase in caspase 3 and endothelial CD31 protein expression. CONCLUSION: These data demonstrate that a treatment with APA + Chl leads to reduced autophagy levels and to tumor suppression compared to the APA monotherapy. Hence, the increased antitumor effect of APA in combination with autophagy inhibitors might provide a new therapeutic approach potentially translatable to patients.


Subject(s)
Androgen Receptor Antagonists , Prostatic Neoplasms , Animals , Humans , Male , Mice , Androgen Receptor Antagonists/pharmacology , Apoptosis , Autophagy , Beclin-1 , Caspase 3 , Cell Line, Tumor , Chloroquine/pharmacology , Chloroquine/therapeutic use , Disease Models, Animal , Heterografts , Ki-67 Antigen , Mice, Nude , Prostatic Neoplasms/pathology , Xenograft Model Antitumor Assays
7.
Stem Cell Res Ther ; 13(1): 156, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410452

ABSTRACT

INTRODUCTION: Tissue engineering is an innovative field with enormous developments in recent years. These advances are not only in the understanding of how stem cells can be isolated, cultured and manipulated but also in their potential for clinical applications. Thus, tissue engineering when applied to skeletal and smooth muscle cells is an area that bears high benefit for patients with muscular diseases or damage. Most of the recent research has been focused on use of adult stem cells. These cells have the ability to rejuvenate and repair damaged tissues and can be derived from different organs and tissue sources. Recently there are several different types of adult stem cells, which have the potential to function as a cell source for tissue engineering of skeletal and smooth muscles. However, to build neo-tissues there are several challenges which have to be addressed, such as the selection of the most suitable stem cell type, isolation techniques, gaining control over its differentiation and proliferation process. CONCLUSION: The usage of adult stem cells for muscle engineering applications is promising. Here, we summarize the status of research on the use of adult stem cells for cell transplantation in experimental animals and humans. In particular, the application of skeletal and smooth muscle engineering in pre-clinical and clinical trials will be discussed.


Subject(s)
Adult Stem Cells , Tissue Engineering , Animals , Cell Differentiation/physiology , Humans , Muscle, Skeletal , Muscle, Smooth , Stem Cells , Tissue Engineering/methods
8.
Neurotrauma Rep ; 3(1): 15-26, 2022.
Article in English | MEDLINE | ID: mdl-35211695

ABSTRACT

Despite the fact that a majority of patients with an injury to the spinal cord develop lower urinary tract dysfunction, only few treatment options are available currently once the dysfunction arises. Tibial nerve stimulation has been used in pilot clinical trials, with some promising results. Hence, we investigated whether the early application of transcutaneous tibial nerve stimulation in the animal model of spinal cord injured rats can prevent the development of detrusor overactivity and/or detrusor-sphincter-dyssynergia. Rats were implanted with a bladder catheter and external urethral sphincter electromyography electrodes. A dorsal over-hemisection, resulting in an incomplete spinal cord injury at the T8/9 spinal level, induced immediate bladder paralysis. One week later, the animals received daily tibial nerve or sham stimulation for 15 days. Effects of stimulation on the lower urinary tract function were assessed by urodynamic investigation. Measurements showed improvements of several key parameters of lower urinary tract function-in particular, non-voiding bladder contractions and intravesical pressure-immediately after the completion of the stimulation period in the stimulated animals. These differences extinguished one week later, however. In the dorsal horn of the lumbosacral spinal cord, a small significant increase of the density of C-fiber afferents layers I-II was found in the stimulated animals at four weeks after spinal cord injury. Tibial nerve stimulation applied acutely after spinal cord injury in rats had an immediate beneficial effect on lower urinary tract dysfunction; however, the effect was transitory and did not last over time. To achieve more sustainable, longer lasting effects, further studies are needed looking into different stimulation protocols using optimized stimulation parameters, timing, and treatment schedules.

9.
Biomed Res Int ; 2021: 9391575, 2021.
Article in English | MEDLINE | ID: mdl-34805410

ABSTRACT

Cell-based tissue engineering (TE) has been proposed to improve treatment outcomes in end-stage bladder disease, but TE approaches with 2D smooth muscle cell (SMC) culture have so far been unsuccessful. Here, we report the development of primary bladder-derived 3D SMC spheroids that outperform 2D SMC cultures in differentiation, maturation, and extracellular matrix (ECM) production. Bladder SMC spheroids were compared with 2D cultures using live-dead staining, qRT-PCR, immunofluorescence, and immunoblotting to investigate culture conditions, contractile phenotype, and ECM deposition. The SMC spheroids were viable for up to 14 days and differentiated rather than proliferating. Spheroids predominantly expressed the late myogenic differentiation marker MyH11, whereas 2D SMC expressed more of the general SMC differentiation marker α-SMA and less MyH11. Furthermore, the expression of bladder wall-specific ECM proteins in SMC spheroids was markedly higher. This first establishment and analysis of primary bladder SMC spheroids are particularly promising for TE because differentiated SMCs and ECM deposition are a prerequisite to building a functional bladder wall substitute. We were able to confirm that SMC spheroids are promising building blocks for studying detrusor regeneration in detail and may provide improved function and regenerative potential, contributing to taking bladder TE a significant step forward.


Subject(s)
Myocytes, Smooth Muscle/cytology , Spheroids, Cellular/cytology , Tissue Engineering/methods , Urinary Bladder/cytology , Actins/genetics , Actins/metabolism , Animals , Cell Differentiation , Cells, Cultured , Contractile Proteins/genetics , Contractile Proteins/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression , Male , Muscle Development , Myocytes, Smooth Muscle/metabolism , Rats , Rats, Wistar , Spheroids, Cellular/metabolism
10.
Cancer Rep (Hoboken) ; 4(6): e1418, 2021 12.
Article in English | MEDLINE | ID: mdl-34008909

ABSTRACT

BACKGROUND: Dutasteride has been shown to increase expression of the prostate-specific membrane antigen (PSMA) in prostate cancer cells in previous in vitro studies. This 5-alpha-reductase inhibitor is commonly used for the treatment of symptomatic benign prostatic enlargement. The modulation of PSMA expression might affect PSMA-based prostate cancer imaging and therapy. AIM: The purpose of this work was to further analyze concentration-dependent effects of Dutasteride on PSMA expression in a mouse xenograft model. METHODS AND RESULTS: Four groups of mice bearing LNCaP xenografts were treated for 14 days with daily intraperitoneal injections of either vehicle control or different concentrations of Dutasteride (0.1, 1, 10 mg/kg). Total expression of PSMA, androgen receptor (AR), and caspase-3 protein was analyzed using immunoblotting (WES). In addition, PSMA, cleaved caspase-3 and Ki-67 expression was assessed and quantified by immunohistochemistry. Tumor size was measured by caliper on day 7 and 14, tumor weight was assessed following tissue harvesting. The mean PSMA protein expression in mice increased significantly after treatment with 1 mg/kg (10-fold) or 10 mg/kg (sixfold) of Dutasteride compared to vehicle control. The mean fluorescence intensity significantly increased by daily injections of 0.1 mg/kg Dutasteride (1.6-fold) as well as 1 and 10 mg/kg Dutasteride (twofold). While the reduction in tumor volume following treatment with high concentrations of 10 mg/kg Dutasteride was nonsignificant, no changes in AR, caspase-3, cleaved caspase-3, and Ki-67 expression were observed. CONCLUSION: Short-term Dutasteride treatments with concentrations of 1 and 10 mg/kg significantly increase the total PSMA protein expression in a mouse LNCaP xenograft model. PSMA fluorescence intensity increases significantly even using lower daily concentrations of 0.1 mg/kg Dutasteride. Further investigations are needed to elucidate the impact of Dutasteride treatment on PSMA expression in patients.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Antigens, Surface/metabolism , Dutasteride/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Glutamate Carboxypeptidase II/metabolism , Prostatic Neoplasms/pathology , Animals , Antigens, Surface/genetics , Apoptosis , Cell Proliferation , Glutamate Carboxypeptidase II/genetics , Humans , Male , Mice , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
11.
Urol Oncol ; 38(8): 683.e19-683.e26, 2020 08.
Article in English | MEDLINE | ID: mdl-32466878

ABSTRACT

BACKGROUND: ARN-509 (Apalutamide) is a unique androgen receptor (AR) antagonist for the treatment of castration-resistant (CR) prostate cancer (PC). It inhibits AR nuclear translocation, DNA binding and transcription of AR gene targets. As dysregulation of autophagy has been detected in PC, the targeting of autophagy is a potential approach to overcome early therapeutic resistance. Therefore, we investigated the characteristics of autophagic response to ARN-509 treatment and evaluated the potential effect of a combination with autophagy inhibition. METHODS: Human prostate cancer cells (LNCaP) were cultivated in a steroid-free medium. Cells were treated with ARN-509 (50 µM) alone or in combination with the autophagy inhibitors 3-methyladenine (3MA, 5 mM) or chloroquine (Chl, 20 µM) or with ATG5 siRNA knock-down. Cell viability and apoptosis were measured by flow cytometry and fluorescence microscopy. Autophagy was monitored by immunohistochemistry, AUTOdot and immunoblotting (WES). RESULTS: Treatment with ARN-509 led to cell death of up to 37% with 50 µM and 60% with 100 µM by day 7. The combination of 50 µM ARN-509 with autophagy inhibitors produced a further increase in cell death by day 7. Immunostaining results showed that ARN-509 induced autophagy in LNCaP cells as evidenced by elevated levels of ATG5, Beclin 1 and LC3 punctuation and by an increase in the LC3-II band detected by WES. Autophagic flux was restored by the treatment of cells with Chl, intensifying the LC3-II band. These findings were further supported by an enhanced autophagosome punctuation observed by Autodot staining. CONCLUSIONS: These data demonstrate that treatment with ARN-509 leads to increased autophagy levels in LNCaP cells. Furthermore, in combination with autophagy inhibitors, ARN-509 provided a significantly elevated antitumor effect, thus providing a new therapeutic approach potentially translatable to patients.


Subject(s)
Adenine/analogs & derivatives , Autophagy/drug effects , Chloroquine/administration & dosage , Prostatic Neoplasms/drug therapy , Thiohydantoins/administration & dosage , Adenine/administration & dosage , Adenine/pharmacology , Chloroquine/pharmacology , Drug Combinations , Drug Screening Assays, Antitumor , Humans , Male , Prostatic Neoplasms/pathology , Thiohydantoins/pharmacology , Treatment Outcome , Tumor Cells, Cultured
12.
Tissue Eng Part A ; 26(17-18): 979-992, 2020 09.
Article in English | MEDLINE | ID: mdl-32093575

ABSTRACT

Introduction: All organs of human body are a conglomerate of various cell types with multidirectional interplay between the different cells and the surrounding microenvironment, leading to a stable tissue formation, homeostasis, and function. To develop a functional smooth muscle tissue, we need to simulate and create a multicellular microenvironment. The multilineage adipose-derived stem cells (ADSCs), which can be easily harvested in large numbers, may provide an alternative cell source for the replacement of smooth muscle cells (SMCs) in cell-based detrusor bioengineering therapeutic approaches. The aim of this study was to investigate whether predifferentiated smooth muscle-like ADSC (pADSC) can support SMCs to generate stable smooth muscle tissue through remodeling of extracellular matrix (ECM) and factor secretion. Methods: Rat SMC and pADSC were mono- and cocultured in the cell ratios 1:1, 1:2, 1:3, and 1:5 (SMC-pADSC) and grown for up to 2 weeks in vitro. The expression of the SMC-specific markers alpha-smooth muscle actin, calponin, myosin heavy chain 11 (MyH11), and smoothelin was assessed, and cell proliferation and contractility were analyzed. Proteomic analysis of the secretome (cell-cell contact was compared with a noncontact transwell 1:1 coculture) and the cell pellets was performed, with the focus on ECM deposition and remodeling, integrin expression and growth factor secretion. Results: SMC and pADSC were strongly positive for all smooth muscle markers. After 1 and 2 weeks of culture, the 1:1 cell ratio developed a significantly higher number of smooth muscle organoids and improved contractility. These organoids were highly structured, consisting of an SMC core surrounded by a pADSC layer. The deposition of various EMC proteins, such as collagens 1a1, 1a2, 2a1, 3a1, 5a2, 6a2, 12a1, and fibrillin 1, was significantly increased. A decreased matrix metalloproteinase 3 (MMP3), MMP9 and MMP13 secretion, as well as increased tissue inhibitors of metalloproteinase 1 (TIMP1) and TIMP2 secretion were found in the contact coculture compared with the monoculture controls. Conclusion: SMC-pADSC 1:1 cocultures exhibit an improved cell proliferation, contractility, and organoid formation compared with all other ratios and monoculture, while retaining a stable phenotype that is comparable with the SMC monoculture. These effects are mediated by increased ECM deposition and tight ECM remodeling by the secreted MMP and TIMP. Impact statement Harvesting smooth muscle cells (SMCs) from diseased bladders represents a significant limitation for clinical translation of bladder Tissue Engineering. Our results suggest that autologous predifferentiated smooth muscle-like adipose-derived stem cell can substitute SMCs, and may be used in combination with SMCs to generate contractile detrusor muscle tissue for patients suffering from end-stage bladder diseases. We demonstrate a beneficial effect when using these cells in a 1:1 ratio with improved deposition of extracellular matrix (ECM) molecules and superior remodeling of the ECM by matrix metalloproteinases and decreased tissue inhibitors of metalloproteinase activity.


Subject(s)
Adipose Tissue/cytology , Muscle, Smooth/growth & development , Stem Cells/cytology , Tissue Engineering , Urinary Bladder , Animals , Cells, Cultured , Proteomics , Rats
13.
Prostate ; 79(12): 1450-1456, 2019 09.
Article in English | MEDLINE | ID: mdl-31233227

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA)-based imaging and therapy are increasingly used in the management of prostate cancer. However, low PSMA surface expression in certain patients is a limitation for PSMA-based technologies. We have previously shown that high doses of dutasteride, a 5α-reductase inhibitor generally used for the treatment of benign prostatic enlargement, increase the PSMA expression in vitro. We now further analyzed the concentration- and time-dependent effects of dutasteride in LNCaP cells. METHODS: Androgen receptor (AR) expressing prostate cancer cells (LNCaP) were treated for 7 to 14 days with vehicle control (0.1% dimethyl sulfoxide) or different concentrations of dutasteride (0.25 , 0.5 , 1 , and 5 µM). In addition to cell proliferation, PSMA surface expression was assessed using flow cytometry (FACS) and immunocytochemistry. Total PSMA and AR expression was analyzed by capillary western immunoassay (WES). In addition, tumor cell uptake and internalization assays of 177 Lu-PSMA-617 were performed. RESULTS: Dutasteride treatment resulted in a significant upregulation of PSMA surface expression compared to vehicle control after 7 days in all tested concentrations. After 14 days a further, concentration-dependent increase of PSMA surface expression was detectable. Total PSMA protein expression significantly increased after treatment of cells with high concentrations of dutasteride using 5 µM for 7 or 14 days. However, when lower concentrations were used total PSMA expression was not significantly altered compared to vehicle control. Further testing revealed a dose-dependent increase in uptake and internalization of 177Lu -PSMA-617 after 7 and 14 days. Though, a significantly increased uptake was only observed using a 5 µM dutasteride concentration for 7 days as well as 1 and 5 µM for 14 days. CONCLUSION: Our investigations revealed a concentration- and time-dependent effect of dutasteride on PSMA expression and uptake of 177Lu -PSMA-617 in LNCaP cells. A short-term treatment of patients with high doses of dutasteride might increase the detection rate of PSMA-based imaging and increase the effect of 177Lu -PSMA-617 therapy via upregulation of PSMA expression.


Subject(s)
5-alpha Reductase Inhibitors/pharmacology , Antigens, Surface/biosynthesis , Dutasteride/pharmacology , Glutamate Carboxypeptidase II/biosynthesis , Prostate/drug effects , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Dipeptides/metabolism , Dose-Response Relationship, Drug , Heterocyclic Compounds, 1-Ring/metabolism , Humans , Lutetium/metabolism , Male , Prostate/metabolism , Prostate-Specific Antigen , Radioisotopes/metabolism , Receptors, Androgen/biosynthesis , Up-Regulation
14.
Front Pediatr ; 7: 91, 2019.
Article in English | MEDLINE | ID: mdl-30984717

ABSTRACT

Several congenital disorders can cause end stage bladder disease and possibly renal damage in children. The current gold standard therapy is enterocystoplasty, a bladder augmentation using an intestinal segment. However, the use of bowel tissue is associated with numerous complications such as metabolic disturbance, stone formation, urine leakage, chronic infections, and malignancy. Urinary diversions using engineered bladder tissue would obviate the need for bowel for bladder reconstruction. Despite impressive progress in the field of bladder tissue engineering over the past decades, the successful transfer of the approach into clinical routine still represents a major challenge. In this review, we discuss major achievements and challenges in bladder tissue regeneration with a focus on different strategies to overcome the obstacles and to meet the need for living functional tissue replacements with a good growth potential and a long life span matching the pediatric population.

15.
Prostate ; 79(2): 206-214, 2019 02.
Article in English | MEDLINE | ID: mdl-30345525

ABSTRACT

INTRODUCTION AND OBJECTIVES: Multiple androgen receptor (AR)-dependent and -independent resistance mechanisms limit the efficacy of current castration-resistant prostate cancer (CRPC) treatment. Novel N-terminal domain (NTD) binding AR-targeting compounds, including EPI-001 (EPI), have the promising ability to block constitutively active splice variants, which represent a major resistance mechanism in CRPC. Autophagy is a conserved lysosomal degradation pathway that acts as survival mechanism in cells exposed to anticancer treatments. We hypothesized, that promising NTD-AR treatment may upregulate autophagy and that a combination of NTD-AR and autophagy inhibition might therefore increase antitumor effects. METHODS: AR-expressing prostate cancer cell lines (LNCaP, LNCaP-EnzR) were treated with different concentrations of EPI (10, 25, 50 µM) and in combination with the autophagy inhibitors chloroquine (CHQ, 20 µM) or 3-methyladenine (3-MA, 5 mM). Cell proliferation was assessed by WST-1-assays after 1 and 7 days. Ethidium bromide and Annexin V were used to measure viability and apoptosis on day 7 after treatment. Autophagosome formation was detected by AUTOdot staining. In addition, autophagic activity was monitored by immunocytochemistry and Western blot (WES) for the expression of ATG5, Beclin1, LC3-I/II and p62. RESULTS: Treatment with EPI resulted in a dose-dependent reduction of cell growth and increased apoptosis in both cancer cell lines on day 7. In addition, EPI treatment demonstrated an upregulated autophagosome formation in LNCaP and LNCaP-EnzR cells. Assessment of autophagic activity by immunocytochemistry and WES revealed an increase of ATG5 and LC3-II expression and a decreased p62 expression in all EPI-treated cells. A combined treatment of EPI with autophagy inhibitors led to a further significant reduction of cell viability in both cell lines. CONCLUSIONS: Our results demonstrate that NTD targeting AR inhibition using EPI leads to an increased autophagic activity in LNCaP and LNCaP-EnzR prostate cancer cells. A combination of NTD AR blockage with simultaneous autophagy inhibition increases the antitumor effect of EPI in prostate cancer cells. Double treatment may offer a promising strategy to overcome resistance mechanisms in advanced prostate cancer.


Subject(s)
Androgen Receptor Antagonists/pharmacology , Benzhydryl Compounds/pharmacology , Chlorohydrins/pharmacology , Phenylthiohydantoin/analogs & derivatives , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Autophagy-Related Protein 5/biosynthesis , Autophagy-Related Protein 5/genetics , Benzamides , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm , Gene Knockdown Techniques , Humans , Male , Microtubule-Associated Proteins/biosynthesis , Microtubule-Associated Proteins/genetics , Nitriles , PC-3 Cells , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology
16.
Cell Death Differ ; 26(6): 1048-1061, 2019 06.
Article in English | MEDLINE | ID: mdl-30154448

ABSTRACT

Stem cells are generally believed to contain a small number of mitochondria, thus accounting for their glycolytic phenotype. We demonstrate here, however, that despite an indispensable glucose dependency, human dermal stem cells (hDSCs) contain very numerous mitochondria. Interestingly, these stem cells segregate into two distinct subpopulations. One exhibits high, the other low-mitochondrial membrane potentials (Δψm). We have made the same observations with mouse neural stem cells (mNSCs) which serve here as a complementary model to hDSCs. Strikingly, pharmacologic inhibition of phosphoinositide 3-kinase (PI3K) increased the overall Δψm, decreased the dependency on glycolysis and led to formation of TUJ1 positive, electrophysiologically functional neuron-like cells in both mNSCs and hDSCs, even in the absence of any neuronal growth factors. Furthermore, of the two, it was the Δψm-high subpopulation which produced more mitochondrial reactive oxygen species (ROS) and showed an enhanced neuronal differentiation capacity as compared to the Δψm-low subpopulation. These data suggest that the Δψm-low stem cells may function as the dormant stem cell population to sustain future neuronal differentiation by avoiding excessive ROS production. Thus, chemical modulation of PI3K activity, switching the metabotype of hDSCs to neurons, may have potential as an autologous transplantation strategy for neurodegenerative diseases.


Subject(s)
Dermis/metabolism , Membrane Potential, Mitochondrial , Neurons/metabolism , Stem Cells/metabolism , Adult , Aged , Aged, 80 and over , Cell Differentiation , Cells, Cultured , Dermis/cytology , Female , Humans , Male , Middle Aged , Mitochondria/metabolism , Neurons/cytology , Phosphatidylinositol 3-Kinases/metabolism , Reactive Oxygen Species/metabolism , Stem Cells/cytology , Young Adult
17.
World J Urol ; 37(2): 351-358, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29951789

ABSTRACT

PURPOSE: Abiraterone acetate (AA) plus prednisone is an approved treatment of advanced prostate cancer (PCa). Autophagy is linked to drug resistance in numerous types of cancers. We hypothesized, that upregulation of autophagy is one of the mechanisms by which PCa cells survive AA anti-tumor treatment and therefore evaluated the potential effect of a combination with autophagy inhibition. METHODS: Human PCa LNCaP cell lines were cultured in steroid-free medium and treated with AA. Autophagy was inhibited by 3-methyladenine, chloroquine and ATG5 siRNA knock-down. Cell viability and apoptosis was assessed by flow cytometry and fluorescence microscopy, and autophagy was monitored by immunohistochemistry, AUTOdot and Western blotting. RESULTS: Western blot revealed upregulation of ATG5 and LC3 II with a reduction of p62 protein expression in AA-treated cells, indicating upregulation of autophagy. These data were supported by results obtained with immunocytochemistry and AUTOdot assays. Using flow cytometry, we showed that combining AA with autophagy inhibition significantly impaired cell viability (1.3-1.6-fold, p < 0.001) and increased apoptosis (1.4-1.5-fold, p < 0.001) compared to AA treatment alone. CONCLUSIONS: AA activates autophagy as a cytoprotective mechanism in LNCaP prostate cancer cells and targeting of autophagy enhances the antitumor effect of the compound.


Subject(s)
Abiraterone Acetate/therapeutic use , Antineoplastic Agents/therapeutic use , Autophagy/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Abiraterone Acetate/pharmacology , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/therapeutic use , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Autophagy-Related Protein 5/biosynthesis , Autophagy-Related Protein 5/genetics , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Chloroquine/pharmacology , Chloroquine/therapeutic use , Drug Resistance, Neoplasm/drug effects , Humans , Male , Prostatic Neoplasms, Castration-Resistant/genetics
18.
Stem Cell Res Ther ; 9(1): 195, 2018 07 17.
Article in English | MEDLINE | ID: mdl-30016973

ABSTRACT

BACKGROUND: Skeletal muscle has a remarkable regenerative capacity. However, extensive damage that exceeds the self-regenerative ability of the muscle can lead to irreversible fibrosis, scarring, and significant loss of function. Adipose-derived stem cells (ADSC) are a highly abundant source of progenitor cells that have been previously reported to support the regeneration of various muscle tissues, including striated muscles. The aim of this study was to evaluate the effect of ADSC transplantation on functional skeletal muscle regeneration in an acute injury model. METHODS: Mouse ADSC were isolated from subcutaneous fat tissue and transplanted with a collagen hydrogel into the crushed tibialis anterior muscle of mice. Recovering muscles were analyzed for gene and protein expression by real-time quantitative polymerase chain reaction and immunohistochemistry. The muscle contractility was assessed by myography in an organ bath system. RESULTS: Intramuscular transplantation of ADSC into crushed tibialis anterior muscle leads to an improved muscle regeneration with ADSC residing in the damaged area. We did not observe ADSC differentiation into new muscle fibers or endothelial cells. However, the ADSC-injected muscles had improved contractility in comparison with the collagen-injected controls 28 days post-transplantation. Additionally, an increase in fiber cross-sectional size and in the number of mature fibers with centralized nuclei was observed. CONCLUSIONS: ADSC transplantation into acute damaged skeletal muscle significantly improves functional muscle tissue regeneration without direct participation in muscle fiber formation. Cellular therapy with ADSC represents a novel approach to promote skeletal muscle regeneration.


Subject(s)
Adipocytes/metabolism , Stem Cells/metabolism , Transplantation, Autologous/methods , Cell Differentiation , Humans , Muscle, Skeletal
19.
Neurourol Urodyn ; 37(8): 2414-2424, 2018 11.
Article in English | MEDLINE | ID: mdl-29797356

ABSTRACT

AIMS: To explore whether autophagy plays a role in the remodeling of bladder smooth muscle cells (SMCs) in children with neurogenic lower urinary tract dysfunction (NLUTD), we investigated the effect of autophagy in NLUTD in the paediatric population. METHODS: Bladder biopsies were taken from children with NLUTD and healthy donors as controls. Samples were labeled with the SMC markers calponin, smoothelin, and the autophagy proteins LC3, ATG5, and Beclin1. The contractile ability of bladder derived SMCs was investigated. RESULTS: ATG5 gene and protein was upregulated in NLUTD muscle tissue compared to normal bladder. NLUTD muscle exhibited a punctated immunostaining pattern for LC3 in a subset of the SMCs, confirming the accumulation of autophagosomes. Pronounced elevation of ATG5 in the SMC in NLUTD tissue was associated with a downregulation of the key contractile proteins smoothelin and calponin. Pharmacological blocking of autophagy completely stopped the cells growth in normal bladder SMCs. Inhibition of autophagy in the NLUTD SMCs, with already elevated levels of ATG5, resulted in a reduction of ATG5 protein expression to the basal level found in normal controls. CONCLUSIONS: Our study suggests that autophagy is an important factor affecting the remodeling of SMCs and the alteration of functionality in bladder smooth muscle tissue in the NLUTD. Since autophagy can be influenced by oral medication, this finding might lead to novel strategies preventing the deterioration of NLUTD muscle.


Subject(s)
Autophagy , Lower Urinary Tract Symptoms/physiopathology , Muscle, Smooth/physiopathology , Urinary Bladder, Neurogenic/physiopathology , Autophagy/drug effects , Autophagy-Related Protein 5/biosynthesis , Autophagy-Related Protein 5/genetics , Biopsy , Child , Female , Gene Expression , Humans , Lower Urinary Tract Symptoms/genetics , Male , Muscle, Smooth/drug effects , Phagosomes/pathology , Urinary Bladder, Neurogenic/genetics
20.
Prostate ; 78(10): 758-765, 2018 07.
Article in English | MEDLINE | ID: mdl-29633296

ABSTRACT

BACKGROUND: Prostate-specific membrane antigen (PSMA)-based imaging and therapy are increasingly used for prostate cancer management. However, limitations are a low PSMA expression in certain patients. Androgen receptor axis inhibition can induce PSMA expression in vitro. We hypothesized that different approved compounds upregulate PSMA expression and tested their effect in vitro. METHODS: Androgen receptor (AR) expressing prostate cancer (LNCaP) and epithelial prostate cells (PNT1A) were treated for 7 days with enzalutamide, dutasteride, rapamycin, metformin, lovastatin, and acetylsalicylic acid (ASA). PSMA and AR protein expression was assessed using flow cytometry, immunocytochemistry and immunoblotting. Furthermore, uptake and internalization of 177 Lu-PSMA-617 was performed. RESULTS: Enzalutamide and dutasteride led to a significant (both P < 0.05) upregulation of PSMA surface levels in LNCaP cells. In addition, treatment with rapamycin showed a non-significant trend toward PSMA upregulation. No changes were detected after treatment with vehicle, metformin, lovastatin, and ASA. Total PSMA protein expression was significantly enhanced after treatment with enzalutamide and rapamycin (both P < 0.05), whereas dutasteride led to a non-significant upregulation. Uptake of 177 Lu-PSMA-617 was significantly increased after treatment of LNCaP with enzalutamide, dutasteride, and rapamycin (P < 0.05). In addition, internalization was significantly increased by enzalutamide and rapamycin (P < 0.05), and non-significantly increased by dutasteride. CONCLUSION: In conclusion, our data provide new insights into the effect of different approved pharmacological compounds that can markedly upregulate PSMA expression and radioligand uptake in vitro. Pharmacologically induced PSMA expression may prove useful to improve prostate cancer detection and to enhance anticancer effects in PSMA-based therapy.


Subject(s)
Antigens, Surface/biosynthesis , Antineoplastic Agents/pharmacology , Glutamate Carboxypeptidase II/biosynthesis , Prostate/drug effects , Prostatic Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/drug therapy , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...