Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Angew Chem Int Ed Engl ; : e202319456, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626385

ABSTRACT

Dynamic combinatorial chemistry (DCC) leverages a reversible reaction to generate compound libraries from constituting building blocks under thermodynamic control. The position of this equilibrium can be biased by addition of a target macromolecule towards enrichment of bound ligands. While DCC has been applied to select ligands for a single target protein, its application to identifying chimeric molecules inducing proximity between two proteins is unprecedented. In this proof-of-concept study, we develop a DCC approach to select bifunctional proteolysis targeting chimeras (PROTACs) based on their ability to stabilize the ternary complex. We focus on VHL-targeting Homo-PROTACs as model system, and show that the formation of a VHL2 : Homo-PROTAC ternary complex reversibly assembled using thiol-disulfide exchange chemistry leads to amplification of potent VHL Homo-PROTACs with degradation activities which correlated well with their biophysical ability to dimerize VHL. Ternary complex templated dynamic combinatorial libraries allowed identification of novel Homo-PROTAC degraders. We anticipate future applications of ternary-complex directed DCC to early PROTAC screenings and expansion to other proximity-inducing modalities beyond PROTACs.

2.
J Med Chem ; 67(1): 402-419, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38164929

ABSTRACT

Trypanothione reductase (TR) is a suitable target for drug discovery approaches against leishmaniasis, although the identification of potent inhibitors is still challenging. Herein, we harnessed a fragment-based drug discovery (FBDD) strategy to develop new TR inhibitors. Previous crystallographic screening identified fragments 1-3, which provided ideal starting points for a medicinal chemistry campaign. In silico investigations revealed critical hotspots in the TR binding site, guiding our structure- and ligand-based structure-actvity relationship (SAR) exploration that yielded fragment-derived compounds 4-14. A trend of improvement in Leishmania infantum TR inhibition was detected along the optimization and confirmed by the crystal structures of 9, 10, and 14 in complex with Trypanosoma brucei TR. Compound 10 showed the best TR inhibitory profile (Ki = 0.2 µM), whereas 9 was the best one in terms of in vitro and ex vivo activity. Although further fine-tuning is needed to improve selectivity, we demonstrated the potentiality of FBDD on a classic but difficult target for leishmaniasis.


Subject(s)
Enzyme Inhibitors , Leishmaniasis , Humans , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Enzyme Inhibitors/chemistry , NADH, NADPH Oxidoreductases/metabolism , Leishmaniasis/drug therapy , Binding Sites
3.
ACS Bio Med Chem Au ; 3(1): 32-45, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-37101607

ABSTRACT

Targeted protein degradation (TPD) is emerging as one of the most innovative strategies to tackle infectious diseases. Particularly, proteolysis-targeting chimera (PROTAC)-mediated protein degradation may offer several benefits over classical anti-infective small-molecule drugs. Because of their peculiar and catalytic mechanism of action, anti-infective PROTACs might be advantageous in terms of efficacy, toxicity, and selectivity. Importantly, PROTACs may also overcome the emergence of antimicrobial resistance. Furthermore, anti-infective PROTACs might have the potential to (i) modulate "undruggable" targets, (ii) "recycle" inhibitors from classical drug discovery approaches, and (iii) open new scenarios for combination therapies. Here, we try to address these points by discussing selected case studies of antiviral PROTACs and the first-in-class antibacterial PROTACs. Finally, we discuss how the field of PROTAC-mediated TPD might be exploited in parasitic diseases. Since no antiparasitic PROTAC has been reported yet, we also describe the parasite proteasome system. While in its infancy and with many challenges ahead, we hope that PROTAC-mediated protein degradation for infectious diseases may lead to the development of next-generation anti-infective drugs.

4.
ACS Chem Neurosci ; 13(15): 2252-2260, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35868251

ABSTRACT

Polypharmacology is a new trend in amyotrophic lateral sclerosis (ALS) therapy and an effective way of addressing a multifactorial etiology involving excitotoxicity, mitochondrial dysfunction, oxidative stress, and microglial activation. Inspired by a reported clinical trial, we converted a riluzole (1)-rasagiline (2) combination into single-molecule multi-target-directed ligands. By a ligand-based approach, the highly structurally integrated hybrids 3-8 were designed and synthesized. Through a target- and phenotypic-based screening pipeline, we identified hit compound 6. It showed monoamine oxidase A (MAO-A) inhibitory activity (IC50 = 6.9 µM) rationalized by in silico studies as well as in vitro brain permeability. By using neuronal and non-neuronal cell models, including ALS-patient-derived cells, we disclosed for 6 a neuroprotective/neuroinflammatory profile similar to that of the parent compounds and their combination. Furthermore, the unexpected MAO inhibitory activity of 1 (IC50 = 8.7 µM) might add a piece to the puzzle of its anti-ALS molecular profile.


Subject(s)
Amyotrophic Lateral Sclerosis , Neuroprotective Agents , Amyotrophic Lateral Sclerosis/drug therapy , Humans , Indans , Ligands , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Riluzole/pharmacology , Riluzole/therapeutic use
5.
Front Mol Biosci ; 9: 900882, 2022.
Article in English | MEDLINE | ID: mdl-35860359

ABSTRACT

Trypanothione reductase (TR) is a key factor in the redox homeostasis of trypanosomatid parasites, critical for survival in the hostile oxidative environment generated by the host to fight infection. TR is considered an attractive target for the development of new trypanocidal agents as it is essential for parasite survival but has no close homolog in humans. However, the high efficiency and turnover of TR challenging targets since only potent inhibitors, with nanomolar IC50, can significantly affect parasite redox state and viability. To aid the design of effective compounds targeting TR, we performed a fragment-based crystal screening at the Diamond Light Source XChem facility using a library optimized for follow-up synthesis steps. The experiment, allowing for testing over 300 compounds, resulted in the identification of 12 new ligands binding five different sites. Interestingly, the screening revealed the existence of an allosteric pocket close to the NADPH binding site, named the "doorstop pocket" since ligands binding at this site interfere with TR activity by hampering the "opening movement" needed to allow cofactor binding. The second remarkable site, known as the Z-site, identified by the screening, is located within the large trypanothione cavity but corresponds to a region not yet exploited for inhibition. The fragments binding to this site are close to each other and have some remarkable features making them ideal for follow-up optimization as a piperazine moiety in three out of five fragments.

6.
J Med Chem ; 65(14): 9507-9530, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35816671

ABSTRACT

Proteolysis targeting chimera (PROTAC)-mediated protein degradation has prompted a radical rethink and is at a crucial stage in driving a drug discovery transition. To fully harness the potential of this technology, a growing paradigm toward enriching PROTACs with other therapeutic modalities has been proposed. Could researchers successfully combine two modalities to yield multifunctional PROTACs with an expanded profile? In this Perspective, we try to answer this question. We discuss how this possibility encompasses different approaches, leading to multitarget PROTACs, light-controllable PROTACs, PROTAC conjugates, and macrocycle- and oligonucleotide-based PROTACs. This possibility promises to further enhance PROTAC efficacy and selectivity, minimize side effects, and hit undruggable targets. While PROTACs have reached the clinical investigation stage, additional steps must be taken toward the translational development of multifunctional PROTACs. A deeper and detailed understanding of the most critical challenges is required to fully exploit these opportunities and decisively enrich the PROTAC toolbox.


Subject(s)
Ubiquitin-Protein Ligases , Drug Discovery , Proteolysis , Ubiquitin-Protein Ligases/metabolism
7.
J Med Chem ; 64(8): 4972-4990, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33829779

ABSTRACT

The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 µM), confirming the design rationale.


Subject(s)
Ligands , Neuroprotective Agents/chemistry , Plant Extracts/chemistry , Acetylcholinesterase/chemistry , Acetylcholinesterase/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Anacardium/chemistry , Anacardium/metabolism , Binding Sites , Butyrylcholinesterase/chemistry , Butyrylcholinesterase/metabolism , Catalytic Domain , Cell Line , Cell Survival/drug effects , Cytokines/metabolism , Drug Design , Humans , Lipopolysaccharides/pharmacology , Microglia/cytology , Microglia/drug effects , Microglia/metabolism , Molecular Dynamics Simulation , Neuroprotective Agents/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Nuts/chemistry , Nuts/metabolism , Structure-Activity Relationship , Tacrine/chemistry , Tacrine/metabolism
8.
Med Res Rev ; 41(5): 2606-2633, 2021 09.
Article in English | MEDLINE | ID: mdl-32557696

ABSTRACT

The continued drug discovery failures in complex neurodegenerative diseases, including Alzheimer's disease (AD), has raised questions about the classical paradigm "one-drug, one-target, one-disease." In parallel, the ever-increasing awareness of the multiplicity of the underlying pathways has led to the affirmation of polypharmacological approaches. Polypharmacology, which broadly embodies the use of pharmaceutical agents acting on multiple targets, seems to be the best way to restore the complex diseased network and to provide disease-modifying effects in AD. In this review, our aim is to provide a roadmap into a world that is still only partly explored and that should be seen as a continuum of pharmacological opportunities, from drug combinations to multitarget-directed ligands (both codrugs and hybrids). Each modality has unique features that can be effectively exploited by medicinal chemists. We argue that understanding their advantages and drawbacks is very helpful in choosing a proper approach and developing successful AD multitarget drug-discovery endeavors. We also briefly dwell on (co)target validation, an aspect that is quite often neglected, but critical for an efficient clinical translation. We substantiate our discussion with instructive examples taken from the recent literature. Our wish is that, in spite of the specter of the high attrition rates, best researchers preferring to enter, stay, and progress in the field would help grow the sector and develop AD polypharmacology to full potential.


Subject(s)
Alzheimer Disease , Pharmaceutical Preparations , Alzheimer Disease/drug therapy , Drug Discovery , Humans , Ligands , Polypharmacology
9.
Am J Nephrol ; 33(5): 461-8, 2011.
Article in English | MEDLINE | ID: mdl-21508634

ABSTRACT

BACKGROUND/AIMS: First-line immunosuppression with the B-cell depleting antibody rituximab reduced proteinuria and induced remission of the disease in patients with nephrotic syndrome (NS) secondary to idiopathic membranous nephropathy (IMN). Here we evaluated whether rituximab is equally effective in patients who failed to respond to previous immunosuppressive treatment. METHODS: This academic, matched-cohort study, compared 2-year outcomes of 11 consecutive IMN patients who received second-line rituximab therapy for NS persisting or relapsing after previous treatment with steroids alone or combined with alkylating agents, cyclosporine, or immunoglobulin G, with those of 11 age- (± 5 years), gender- and proteinuria- (± 1 g/24h) matched reference patients given first-line rituximab therapy. RESULTS: Patients' and reference patients' baseline characteristics were similar. Compared to baseline, 24-hour proteinuria similarly declined at 1 and 2 years post-rituximab (by 50.5 ± 25.1% and 60.9 ± 17.4% in patients and by 52.7 ± 31.5% and 69.4 ± 40.4% in reference patients, respectively; p < 0.01 for all comparisons vs. baseline). 8 patients and 7 reference patients achieved full (3 vs. 2) or partial (5 per cohort) proteinuria remission. Hypoalbuminemia and hyperlipidemia normalized in both groups. Self-limited infusion-related reactions occurred in 1 subject per cohort. CONCLUSION: Rituximab reduced proteinuria in IMN patients with no or only transient response to unselective immunosuppression as effectively and safely as in patients without previous immunosuppression.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/pharmacology , Glomerulonephritis, Membranous/drug therapy , Immunologic Factors/pharmacology , Adult , Alkylating Agents/pharmacology , Biopsy , Cohort Studies , Cyclosporine/therapeutic use , Female , Humans , Immunoglobulin G/therapeutic use , Immunosuppressive Agents/therapeutic use , Longitudinal Studies , Male , Middle Aged , Prospective Studies , Proteinuria/blood , Remission Induction , Rituximab
SELECTION OF CITATIONS
SEARCH DETAIL
...