Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Endocrinol Invest ; 46(2): 381-391, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36057045

ABSTRACT

PURPOSE: To evaluate the impact of the "Search and rescue" field military training exercise (SR_FTX) on hormonal modulation and identify their possible correlation with physical and cognitive performance. METHODS: An observational (before and after) study was carried out, with male firefighters cadets (n = 42; age = 23[22;27] years) undergoing a nine-day military exercise (SR_FTX). The Countermovement jump (physical performance), the Stroop test (cognitive alertness), and blood tests for testosterone, cortisol, GH, and IGF-1 were applied. Wilcoxon for paired samples and Spearman's correlation tests were used. RESULTS: Testosterone (751.10 [559.10;882.8] vs. 108.40 [80.12;156.40] ng/dL) and IGF-1 (217.5 [180;239.30] vs. 105 [93;129] ng/mL) significantly decreased while GH (0.10 [0.06;0.18] vs. 1.10 [0.58;2.28] ng/mL) and cortisol (9.60 [8.20;11.55] vs. 15.55 [12.28;18.98] ug/dL) significantly increased. Physical performance (31.2 [30.04;35.4] vs. 21.49 [19,02;23,59] cm) and cognitive alertness were significantly worse after SR_FTX (Congruent task: 1,78 (0183) vs. 1,56 (0185) response/s and incongruous task: 1,23 (0191) vs. 1,02 (0207) response/s). The physical performance showed a strong correlation with testosterone (rho = 0.694) and regular correlations with both IGF-1 (rho = 0.598) and cortisol (rho = - 0.580). The Stroop test presented weak correlations with GH (rho = - 0.350) and cortisol (rho = - 0.361). CONCLUSION: SR_FTX negatively impacted hormonal modulation, physical and cognitive performance. These findings could help commanders decide to replace the employed firefighters in a real mission more frequently. Also, if the real scenario allows, they could think about providing better work conditions, such as improving caloric intake and rest periods, to preserve the military performance and health.


Subject(s)
Firefighters , Military Personnel , Humans , Male , Young Adult , Adult , Insulin-Like Growth Factor I , Hydrocortisone , Exercise , Sleep , Testosterone
2.
Int J Sports Med ; 34(7): 661-6, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23258605

ABSTRACT

Physical exercise can improve health and may lead to changes in the functionality of the immune system. Moderate intensity exercise can reduce the risk of infection by shifting the overall immune response towards a T helper type 1 pattern. This study investigates the effect of 12 weeks of swimming on the cytokine profile of lymph node cells and macrophages and of the nitric oxide production by these cells. BALB/c mice were divided into 2 groups. The exercise group was subjected to swimming exercise. Lymph node cells culture showed that concentrations of interferon-γ and tumour necrosis factor-α were higher in the exercised group, while levels of interleukine-4 and interleukine-10 were significantly decreased in this group. The interleukine-10/interferon-γ ratio tended towards a T helper type 1 profile. Moreover, macrophages isolated from exercised mice produced more interleukine-12 and tumour necrosis factor-α following lipopolysaccharide stimulus. Challenging these macrophages with Leishmania major resulted in higher interleukine-12 production than was observed with macrophages from the control group. Nitric oxide production was increased in macrophages isolated from exercised group following lipopolysaccharide stimulus but not following infection with Leishmania major. These data suggest that exercise biases the immune system towards a T helper type 1 response profile.


Subject(s)
Cytokines/metabolism , Nitric Oxide/metabolism , Physical Conditioning, Animal/physiology , Th1 Cells/immunology , Animals , Cytokines/immunology , Leishmania major/immunology , Leishmania major/isolation & purification , Leishmaniasis, Cutaneous/immunology , Lipopolysaccharides/immunology , Lymph Nodes/cytology , Lymph Nodes/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Nitric Oxide/immunology , Swimming/physiology
3.
Horm Metab Res ; 40(4): 276-80, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18548387

ABSTRACT

Thyroid dysfunction can compromise physical capacity. Here, we analyze the effects of hyperthyroidism and hypothyroidism on maximum swim time in rats subjected to acute forced swimming, as an indicator of anaerobic capacity. Animals were forced to swim against a load (5% of body weight) attached to the tail and were killed 48 hours after the last test. Hyperthyroid rats were treated with thyroxine (50 mug/100 g body weight, i. p. for 7 days). The hypothyroid group received 0.03% methimazole in the drinking water for 4 weeks. Thyroid state was confirmed by alterations in serum thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), and liver mitochondrial glycerol phosphate dehydrogenase (mGPD) activity. Hyperthyroid rats presented significantly lower visceral fat mass (VFM) and higher food intake (p<0.05) with unchanged body weight. Maximum swim time (MST), glycogen content (skeletal muscle and liver), and leptin levels were lower while corticosterone was higher (p<0.05). In hypothyroid rats body weight was lower (p<0.05), without changes in VFM. Tested at 7-day intervals, MST was lower for tests 2, 3, and 4 (p<0.05). Muscle glycogen was higher in extensor digitorum longus (EDL) and soleus (p<0.05), without changes in liver. Serum corticosterone was lower, while leptin was higher (p<0.05). These results suggest that in hyperthyroid and hypothyroid rats, thyroid hormones together with corticosterone and/or leptin may impair exercise capacity differently through its known effects on glycogen metabolism.


Subject(s)
Exercise Tolerance/physiology , Hyperthyroidism/physiopathology , Hypothyroidism/physiopathology , Swimming/physiology , Animals , Body Composition/physiology , Corticosterone/blood , Eating/physiology , Glycogen/metabolism , Leptin/blood , Liver Glycogen/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Rats , Rats, Wistar , Thyrotropin/blood , Thyroxine/blood
4.
Biochim Biophys Acta ; 1748(2): 165-73, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15769593

ABSTRACT

Access to different intermediates that follow ATP cleavage in the catalytic cycle of skeletal muscle actomyosin is a major goal of studies that aim toward an understanding of chemomechanical coupling in muscle contraction. 2,4-Dinitrophenol (DNP, 10(-2) M) inhibits muscle contraction, even though it accelerates the ATPase activity of isolated myosin. Here we used myosin subfragment 1 (S1), acto-S1 and mammalian skinned fibers to investigate the action of DNP in the presence of actin. DNP increases acto-S1 affinity and at the same time reduces the maximum rate of turnover as [actin]-->infinity. In skinned fibers, isometric force is reduced to the same extent (K0.5 approximately equal to 6 mM). Although actin activates Pi release from S1 at all DNP concentrations tested, the combination of enhanced S1 activity and reduced acto-S1 activity leads to a reduction in the ratio of these two rates by a factor of 30 at the highest DNP concentration tested. This effect is seen at low as well as at high actin concentrations and is less pronounced with the analog meta-nitrophenol (MNP), which does not inhibit the acto-S1 ATPase. Arrhenius plots for acto-S1 are parallel and linear between 5 and 30 degrees C, indicating no abrupt shifts in rate-limiting step with either DNP or MNP. Analysis of the reduction in isometric force with increasing Pi concentrations suggests that DNP and MNP stabilize weakly bound cross-bridges (AM.ADP.Pi). In addition, MNP (10(-2) M) increases the apparent affinity for Pi.


Subject(s)
2,4-Dinitrophenol/chemistry , Actomyosin/chemistry , Adenosine Triphosphate/chemistry , Actins/chemistry , Actomyosin/metabolism , Animals , Dose-Response Relationship, Drug , Hydrolysis , Kinetics , Models, Chemical , Muscle Contraction , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myosins/chemistry , Nitrophenols/pharmacology , Protein Binding , Rabbits , Temperature
5.
Biochem J ; 324 ( Pt 3): 877-84, 1997 Jun 15.
Article in English | MEDLINE | ID: mdl-9210412

ABSTRACT

2,4-Dinitrophenol (DNP) activates the myosin ATPase of mammalian skeletal muscle in the presence of Ca2+ or Mg2+, and inhibits it when the bivalent cations are replaced by K+ and EDTA. Activation of Mg2+ATPase is abolished by the presence of unregulated actin. 3-Nitrophenol (3-NP) is also an activator, whereas other analogues (2-nitrophenol, 2-NP, and 4-nitrophenol, 4-NP) are much less effective. Concentrations required for their half-maximal effects (K0.5) range from 2 to 15 mM for 3-NP and DNP in the presence of different cations, and the sequence for the analogues is 3-NP<=DNP<<2-NP approximately 4-NP, which is apparently unrelated to either hydrophobicity or pK. DNP and 3-NP have almost identical effects on the ATPase activity of chymotryptic subfragment 1 as they do on myosin, which is an indication that their target is the globular head region rather than the tail, or the 18 kDa (regulatory) light chain. Analysis of the ATP concentration dependence for subfragment- 1 ATPase in the presence of Ca2+ or Mg2+ shows that DNP activates only at high substrate concentrations, becoming increasingly effective with ATP concentrations in the physiological range. At low substrate concentrations, DNP inhibits hydrolysis by increasing the apparent Km for ATP at the catalytic site. In the presence of Mg2+, it mimics the effect of actin, which increases the Km and accelerates the release of products following hydrolysis. At high substrate concentrations, activation by DNP appears to involve a kinetic component with low affinity for ATP that can increase the overall reaction rate by a factor of 2- to 9-fold, depending on the bivalent cation. This low-affinity component is either induced by the drug (in the presence of Mg2+) or shifted by the drug to a lower ATP concentration range (in the presence of Ca2+).


Subject(s)
Myosin Subfragments/metabolism , Nitrophenols/pharmacology , Adenosine Triphosphate/metabolism , Animals , Binding Sites , Enzyme Activation , Kinetics , Muscle, Skeletal/metabolism , Myosins/metabolism , Nitrophenols/chemistry , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL