Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
ACS Infect Dis ; 8(7): 1356-1366, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35732073

ABSTRACT

Neglected tropical diseases (NTDs), including trypanosomiasis, leishmaniasis, and schistosomiasis, result in a significant burden in terms of morbidity and mortality worldwide every year. Current antiparasitic drugs suffer from several limitations such as toxicity, no efficacy toward all of the forms of the parasites' life cycle, and/or induction of resistance. Histone-modifying enzymes play a crucial role in parasite growth and survival; thus, the use of epigenetic drugs has been suggested as a strategy for the treatment of NTDs. We tested structurally different HDACi 1-9, chosen from our in-house library or newly synthesized, against Trypanosoma cruzi, Leishmania spp, and Schistosoma mansoni. Among them, 4 emerged as the most potent against all of the tested parasites, but it was too toxic against host cells, hampering further studies. The retinoic 2'-aminoanilide 8 was less potent than 4 in all parasitic assays, but as its toxicity is considerably lower, it could be the starting structure for further development. In T. cruzi, compound 3 exhibited a single-digit micromolar inhibition of parasite growth combined with moderate toxicity. In S. mansoni, 4's close analogs 17-20 were tested in new transformed schistosomula (NTS) and adult worms displaying high death induction against both parasite forms. Among them, 17 and 19 exhibited very low toxicity in human retinal pigment epithelial (RPE) cells, thus being promising compounds for further optimization.


Subject(s)
Chagas Disease , Leishmania , Trypanosoma cruzi , Animals , Chagas Disease/drug therapy , Chagas Disease/parasitology , Histone Deacetylase Inhibitors/pharmacology , Schistosoma mansoni
2.
Basic Res Cardiol ; 104(3): 238-46, 2009 May.
Article in English | MEDLINE | ID: mdl-19190953

ABSTRACT

Trypanosoma cruzi, an intracellular protozoan parasite infecting a wide variety of vertebrates, is the agent responsible for Chagas' disease. This pathology often results in severe inflammatory heart condition and it is one of the major causes of dilated cardiomyopathy leading to heart failure in Latin America. Nevertheless, little is known about the changes in isolate cardiac myocytes contractility during the development of this pathology. Here we report a relationship between cytokines profile of mice infected with T. cruzi and the modifications in the cellular contractility pattern. We found that cellular contractility, measured as fractional shortening, showed a complex behavior. The changes were evaluated during the acute phase (15, 30 and 45 dpi) and chronic phase (>90 dpi). The time to half contraction and relaxation were lengthier despite the number of days after infection or the heart region evaluated. The maximal contraction and relaxation velocities were significantly slower. The observed changes in cellular contractility were correlated with the presence of circulating IFN-gamma, TNF-alpha and MCP-1/CCL2 during the course of infection. Together, our data demonstrate that cellular contractility is altered in the three heart regions studied, and these alterations are observed at the very beginning of the parasitism and they remained until the chronic phase has been reached. Indeed, we propose a role for IFN-gamma, TNF-alpha and MCP-1/CCL2 in the mechanical heart remodeling during experimental Chagas' disease.


Subject(s)
Chagas Cardiomyopathy/immunology , Chagas Cardiomyopathy/physiopathology , Cytokines/blood , Myocytes, Cardiac/immunology , Animals , Chagas Cardiomyopathy/blood , Cytokines/immunology , Gene Expression Profiling , Male , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/parasitology , Trypanosoma cruzi
3.
Microbes Infect ; 10(6): 680-8, 2008 May.
Article in English | MEDLINE | ID: mdl-18485782

ABSTRACT

Recent reports have established an important role of CD4+CD25+ T cells in the immune regulation of infectious diseases, autoimmune disorders and cancer. In the present work, we investigated whether these cells had a regulatory role during Trypanosoma cruzi infection, using the Colombian strain. Inactivation of CD4+CD25+ cells in vivo conferred mice slightly more resistant to infection with the Colombian strain of T. cruzi, as evidenced by lower parasitemia and mortality rates. The augmented resistance to infection with Colombian strain did correlate with increased activation of effector CD4 cells. It was antibody-independent, since no difference in levels of IgM, IgG, IgG1 and IgG2a(b) recognizing T. cruzi antigens was observed throughout the infection of CD25-inactivated and control mice. Regarding pathogenesis, inflammatory infiltrate and frequency of CD4 and CD8 T cells or macrophages in the cardiac tissue was similar in both groups. Together, our data indicate that CD4+CD25+ cells have a limited role on host resistance during early T. cruzi infection. Despite exhaustive investigation, we did not observe any role for these regulatory cells in the pathogenesis of experimental chronic Chagas' disease.


Subject(s)
CD4 Antigens/analysis , Chagas Disease/immunology , T-Lymphocyte Subsets/immunology , Trypanosoma cruzi/immunology , Trypanosoma cruzi/pathogenicity , Animals , Interleukin-2 Receptor alpha Subunit/analysis , Interleukin-2 Receptor alpha Subunit/metabolism , Mice , T-Lymphocyte Subsets/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL