Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
J Hum Genet ; 67(12): 701-709, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36167770

ABSTRACT

Single nucleotide polymorphisms (SNPs) of BCL11A gene and HBS1L-MYB intergenic region (named HMIP-2) affect both fetal hemoglobin (HbF) concentration and clinical outcomes in patients with sickle cell anemia (SCA). However, no previous study has examined the interaction among these SNPs in the regulation of HbF. We examined whether HbF-boosting haplotypes combining alleles of functional SNPs of BCL11A and HMIP-2 were associated with clinical outcomes and hematological parameters, and whether they interact to regulate HbF in a cohort of Brazilian children with SCA. The minor haplotype of BCL11A ("TCA", an allele combination of rs1427407, rs766432, and rs4671393) was associated with higher HbF, hemoglobin and lower reticulocytes count compared to reference haplotype "GAG". The minor haplotype of HMIP-2 ("CGC", an allele combination of rs9399137, rs4895441, and rs9494145) was associated with higher HbF and hemoglobin compared to reference haplotype "TAT". Subjects carrying minor haplotypes showed reduced rate of clinical complications compared to reference haplotypes. Non-carriers of both minor haplotypes for BCL11A and HMIP-2 showed the lowest HbF concentration. Subjects carrying only the minor haplotype of BCL11A showed significantly higher HbF concentration than non-carriers of any minor haplotype, which showed no significant difference compared to subjects carrying only the minor haplotype of HMIP-2. Interestingly, subjects carrying both minor haplotypes of BCL11A ("TCA") and HMIP-2 ("CGC") showed significantly higher HbF levels than subjects carrying only the minor haplotype of BCL11A. Our novel findings suggest that HbF-boosting haplotypes of BCL11A and HMIP-2 can predict clinical outcomes and may interact to regulate HbF in patients with SCA.


Subject(s)
Anemia, Sickle Cell , Fetal Hemoglobin , Child , Humans , Fetal Hemoglobin/genetics , Haplotypes , DNA, Intergenic , Anemia, Sickle Cell/genetics , Cohort Studies , Transcription Factors , Polymorphism, Single Nucleotide , Repressor Proteins/genetics
4.
Front Pharmacol ; 12: 779497, 2021.
Article in English | MEDLINE | ID: mdl-35126118

ABSTRACT

Hydroxyurea has long been used for the treatment of sickle cell anemia (SCA), and its clinical effectiveness is related to the induction of fetal hemoglobin (HbF), a major modifier of SCA phenotypes. However, there is substantial variability in response to hydroxyurea among patients with SCA. While some patients show an increase in HbF levels and an ameliorated clinical condition under low doses of hydroxyurea, other patients present a poor effect or even develop toxicity. However, the effects of genetic polymorphisms on increasing HbF levels in response to hydroxyurea in patients with SCA (Hb SS) have been less explored. Therefore, we performed a systematic review to assess whether single-nucleotide polymorphisms (SNPs) affect HbF levels in patients with SCA treated with hydroxyurea. Moreover, we performed pathway analysis using the set of genes with SNPs found to be associated with changes in HbF levels in response to hydroxyurea among the included studies. The systematic literature search was conducted on Medline/PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Scopus, and Web of Science. Seven cohort studies were included following our inclusion and exclusion criteria. From the 728 genetic polymorphisms examined in the included studies, 50 different SNPs of 17 genes were found to be associated with HbF changes in patients with SCA treated with hydroxyurea, which are known to affect baseline HbF but are not restricted to them. Enrichment analysis of this gene set revealed reactome pathways with the lowest adjusted p-values and highest combined scores related to VEGF ligand-receptor interactions (R-HSA-194313; R-HSA-195399) and the urea cycle (R-HSA-70635). Pharmacogenetic studies of response to hydroxyurea therapy in patients with SCA are still scarce and markedly heterogeneous regarding candidate genes and SNPs examined for association with HbF changes and outcomes, suggesting that further studies are needed. The reviewed findings highlighted that similar to baseline HbF, changes in HbF levels upon hydroxyurea therapy are likely to be regulated by multiple loci. There is evidence that SNPs in intron 2 of BCL11A affect HbF changes in response to hydroxyurea therapy, a potential application that might improve the clinical management of SCA. Systematic Review Registration: (https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=208790).

5.
Ann Hematol ; 99(7): 1453-1463, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32447424

ABSTRACT

Fetal hemoglobin (HbF) ameliorates clinical severity of sickle cell anemia (SCA). The major loci regulating HbF levels are HBB cluster, BCL11A, and HMIP-2 (HBS1L-MYB). However, the impact of noncoding single-nucleotide polymorphisms (SNPs) in these loci on clinical outcomes and their functional role on regulating HbF levels should be better elucidated. Therefore, we performed comprehensive association analyses of 14 noncoding SNPs in five loci with HbF levels and with clinical outcomes in a cohort of 250 children with SCA from Southeastern Brazil, and further performed functional annotation of these SNPs. We found SNPs independently associated with HbF levels: rs4671393 in BCL11A (ß-coefficient = 0.28), rs9399137 in HMIP-2A (ß-coefficient = 0.16), and rs4895441 in HMIP-2B (ß-coefficient = 0.15). Patients carrying minor (HbF-boosting) alleles for rs1427407, rs93979137, rs4895441, rs9402686, and rs9494145 showed reduced count of reticulocytes (p < 0.01), while those carrying the T allele of rs9494145 showed lower white blood cell count (p = 0.002). Carriers of the minor allele for rs9402686 showed higher peripheral saturation of oxygen (p = 0.002). Patients carrying minor alleles in BCL11A showed lower risk of transfusion incidence rate ratio (IRR ≥ 1.3; p < 0.0001). This effect was independent of HbF effect (p = 0.005). Carriers of minor alleles for rs9399137 and rs9402686 showed lower risk of acute chest syndrome (IRR > 1.3; p ≤ 0.01). Carriers of the reference allele for rs4671393 showed lower risk of infections (IRR = 1.16; p = 0.01). In conclusion, patients carrying HbF-boosting alleles of BCL11A and HMIP-2 were associated with milder clinical phenotypes. Higher HbF concentration may underlie this effect.


Subject(s)
Anemia, Sickle Cell/diagnosis , Anemia, Sickle Cell/genetics , Fetal Hemoglobin/metabolism , GTP-Binding Proteins/genetics , Genes, myb , Polymorphism, Single Nucleotide , Repressor Proteins/genetics , Alleles , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/epidemiology , Brazil/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Fetal Hemoglobin/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Infant , Infant, Newborn , Male , Prognosis , Retrospective Studies
7.
Rev Bras Hematol Hemoter ; 39(2): 108-114, 2017.
Article in English | MEDLINE | ID: mdl-28577646

ABSTRACT

BACKGROUND: The etiology of stroke, a severe complication of sickle cell anemia, involves inflammatory processes. However, the pathogenetic mechanisms are unknown. The aim of this study was to evaluate the influence of interleukin-10 polymorphisms and haplotypes on the risk of acute cerebral ischemia and high-risk transcranial Doppler in 395 children with sickle cell anemia from the state of Minas Gerais, Brazil. METHODS: Interleukin-10 haplotypes were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing. The outcomes studied were acute cerebral ischemia and high-risk transcranial Doppler. Clinical data were retrieved from the children's records. RESULTS: There was no statistically significant difference in the frequencies of polymorphisms and haplotypes between children with and without acute cerebral ischemia or children with or without high-risk transcranial Doppler. These data are consistent with a previous report that showed an absence of association between interleukin-10 plasma levels and high-risk transcranial Doppler velocity in children with sickle cell anemia. CONCLUSION: Interleukin-10 haplotypes were not associated with the risk of acute cerebral ischemia or high-risk transcranial Doppler velocity in children with sickle cell anemia from the state of Minas Gerais, Brazil.

8.
Rev. bras. hematol. hemoter ; 39(2): 108-114, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-898907

ABSTRACT

ABSTRACT Background: The etiology of stroke, a severe complication of sickle cell anemia, involves inflammatory processes. However, the pathogenetic mechanisms are unknown. The aim of this study was to evaluate the influence of interleukin-10 polymorphisms and haplotypes on the risk of acute cerebral ischemia and high-risk transcranial Doppler in 395 children with sickle cell anemia from the state of Minas Gerais, Brazil. Methods: Interleukin-10 haplotypes were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing. The outcomes studied were acute cerebral ischemia and high-risk transcranial Doppler. Clinical data were retrieved from the children's records. Results: There was no statistically significant difference in the frequencies of polymorphisms and haplotypes between children with and without acute cerebral ischemia or children with or without high-risk transcranial Doppler. These data are consistent with a previous report that showed an absence of association between interleukin-10 plasma levels and high-risk transcranial Doppler velocity in children with sickle cell anemia. Conclusion: Interleukin-10 haplotypes were not associated with the risk of acute cerebral ischemia or high-risk transcranial Doppler velocity in children with sickle cell anemia from the state of Minas Gerais, Brazil.


Subject(s)
Humans , Male , Female , Child , Polymorphism, Genetic , Interleukin-10 , Ultrasonography, Doppler, Transcranial , Stroke , Anemia, Sickle Cell , Brain Ischemia , Child
9.
Ann Hematol ; 95(11): 1869-80, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27520094

ABSTRACT

Stroke is a severe clinical manifestation of sickle cell anemia (SCA). Despite the prognostic relevance of transcranial Doppler (TCD), more accurate tools to assess stroke risk in children with SCA are required. Here, we describe the effect of clinical, laboratory, and molecular features on the risk of stroke and high-risk TCD in children from the newborn cohort of Minas Gerais, Brazil. Outcomes studied were acute cerebral ischemia and high-risk TCD. Clinical and hematological data were retrieved from children's records. Genetic markers, which were known for their association with stroke risk, were genotyped by polymerase chain reaction/restriction fragment length polymorphism and sequencing. The cumulative incidence of acute cerebral ischemia by the age of 8 years was 7.4 % and that of high-risk TCD by the age of 11.5 years was 14.2 %. The final multivariate model for acute cerebral ischemia risk included high white blood cell count and reticulocyte count, acute chest syndrome rate, and the single nucleotide polymorphisms (SNPs) TEK rs489347 and TNF-α rs1800629. The model for high-risk TCD included high reticulocyte count and the SNPs TEK rs489347 and TGFBR3 rs284875. Children with risk factors should be considered for intensive risk monitoring and for intervention therapy.


Subject(s)
Anemia, Sickle Cell/complications , Brain Ischemia/blood , Reticulocyte Count , Acute Chest Syndrome/etiology , Acute Disease , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , Child , Female , Follow-Up Studies , Haplotypes , Humans , Incidence , Infant, Newborn , Leukocyte Count , Male , Polymorphism, Single Nucleotide , Proteoglycans/genetics , Receptor, TIE-2/genetics , Receptors, Transforming Growth Factor beta/genetics , Risk , Risk Factors , Tumor Necrosis Factor-alpha/genetics , Ultrasonography, Doppler, Transcranial , beta-Globins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...