Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Planets ; 127(5): e2021JE007087, 2022 May.
Article in English | MEDLINE | ID: mdl-35860764

ABSTRACT

A widely hypothesized but complex transition from widespread fluvial activity to predominantly aeolian processes is inferred on Mars based on remote sensing data observations of ancient landforms. However, the lack of analysis of in situ martian fluvial deposits hinders our understanding of the flow regime nature and sustainability of the martian fluvial activity and the hunt for ancient life. Studying analogs from arid zones on Earth is fundamental to quantitatively understanding geomorphic processes and climate drivers that might have dominated during early Mars. Here we investigate the formation and preservation of fluvial depositional systems in the eastern Sahara, where the largest arid region on Earth hosts important repositories of past climatic changes. The fluvial systems are composed of well-preserved single-thread sinuous to branching ridges and fan-shaped deposits interpreted as deltas. The systems' configuration and sedimentary content suggest that ephemeral rivers carved these landforms by sequential intermittent episodes of erosion and deposition active for 10-100s years over ∼10,000 years during the late Quaternary. Subsequently, these landforms were sculpted by a marginal role of rainfall and aeolian processes with minimum erosion rates of 1.1 ± 0.2 mm/yr, supplying ∼96 ± 24 × 1010 m3 of disaggregated sediment to adjacent aeolian dunes. Our results imply that similar martian fluvial systems preserving single-thread, short distance source-to-sink courses may have formed due to transient drainage networks active over short durations. Altogether, this study adds to the growing recognition of the complexity of interpreting climate history from orbital images of landforms.

2.
Geophys Res Lett ; 48(4): e2020GL091651, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33776161

ABSTRACT

Wind-formed features are abundant in Oxia Planum (Mars), the landing site of the 2022 ExoMars mission, which shows geological evidence for a past wet environment. Studies of aeolian bedforms at the landing site were focused on assessing the risk for rover trafficability, however their potential in recording climatic fluctuations has not been explored. Here we show that the landing site experienced multiple climatic changes in the Amazonian, which are recorded by an intriguing set of ridges that we interpret as Periodic Bedrock Ridges (PBRs). Clues for a PBR origin result from ridge regularity, defect terminations, and the presence of preserved megaripples detaching from the PBRs. PBR orientation differs from superimposed transverse aeolian ridges pointing toward a major change in wind regime. Our results provide constrains on PBR formation mechanisms and offer indications on paleo winds that will be crucial for understanding the landing site geology.

3.
J Geophys Res Planets ; 124(8): 2246-2271, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31763111

ABSTRACT

Understanding the initial and flow conditions of contemporary flows in Martian gullies, generally believed to be triggered and fluidized by CO2 sublimation, is crucial for deciphering climate conditions needed to trigger and sustain them. We employ the RAMMS (RApid Mass Movement Simulation) debris flow and avalanche model to back calculate initial and flow conditions of recent flows in three gullies in Hale crater. We infer minimum release depths of 1.0-1.5 m and initial release volumes of 100-200 m3. Entrainment leads to final flow volumes that are ∼2.5-5.5 times larger than initially released, and entrainment is found necessary to match the observed flow deposits. Simulated mean cross-channel flow velocities decrease from 3-4 m/s to ∼1 m/s from release area to flow terminus, while flow depths generally decrease from 0.5-1 to 0.1-0.2 m. The mean cross-channel erosion depth and deposition thicknesses are ∼0.1-0.3 m. Back-calculated dry-Coulomb friction ranges from 0.1 to 0.25 and viscous-turbulent friction between 100 and 200 m/s2, which are values similar to those of granular debris flows on Earth. These results suggest that recent flows in gullies are fluidized to a similar degree as are granular debris flows on Earth. Using a novel model for mass flow fluidization by CO2 sublimation we are able to show that under Martian atmospheric conditions very small volumetric fractions of CO2 of ≪1% within mass flows may indeed yield sufficiently large gas fluxes to cause fluidization and enhance flow mobility.

SELECTION OF CITATIONS
SEARCH DETAIL
...