Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Astronaut ; 92(1): 73-78, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23976802

ABSTRACT

Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor 1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/- ) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

2.
Bone ; 52(1): 220-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23063782

ABSTRACT

Oxygen affects the activity of multiple skeletogenic cells and is involved in many processes that are important for fracture healing. However, the role of oxygen in fracture healing has not been fully studied. Here we systematically examine the effects of oxygen tension on fracture healing and test the ability of hyperoxia to rescue healing defects in a mouse model of ischemic fracture healing. Mice with tibia fracture were housed in custom-built gas chambers and groups breathed a constant atmosphere of 13% oxygen (hypoxia), 21% oxygen (normoxia), or 50% oxygen (hyperoxia). The influx of inflammatory cells to the fracture site, stem cell differentiation, tissue vascularization, and fracture healing were analyzed. In addition, the efficacy of hyperoxia (50% oxygen) as a treatment regimen for fracture nonunion was tested. Hypoxic animals had decreased tissue vascularity, decreased bone formation, and delayed callus remodeling. Hyperoxia increased tissue vascularization, altered fracture healing in un-complicated fractures, and improved bone repair in ischemia-induced delayed fracture union. However, neither hypoxia nor hyperoxia significantly altered chondrogenesis or osteogenesis during early stages of fracture healing, and infiltration of macrophages and neutrophils was not affected by environmental oxygen after bone injury. In conclusion, our results indicate that environmental oxygen levels affect tissue vascularization and fracture healing, and that providing oxygen when fractures are accompanied by ischemia may be beneficial.


Subject(s)
Fracture Healing/physiology , Oxygen/physiology , Animals , Cell Differentiation/physiology , Enzyme-Linked Immunosorbent Assay , Mice , Stem Cells/cytology , Vascular Endothelial Growth Factor A/metabolism
3.
J Orthop Trauma ; 25(8): 494-9, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21738063

ABSTRACT

OBJECTIVES: The goal of this study was to determine to what extent mechanical stability affects vascular repair during fracture healing. METHODS: Stabilized and nonstabilized tibia fractures were created in adult mice. Fracture tissues were collected at multiple time points during early fracture healing. Vasculature in fractured limbs was visualized by immunohistochemistry with an anti-PECAM-1 antibody on tissue sections and then quantified with stereology. Oxygen tension, vascular endothelial growth factor expression, and lactate accumulation at the fracture site were measured. Gene expression was compared between stabilized and nonstabilized fractures by microarray analysis. RESULTS: We found that new blood vessel formation was robust by 3 days after fracture. Quantitative analysis showed that nonstabilized fractures had higher length density and surface density than stabilized fractures at 3 days after injury, suggesting that nonstabilized fractures were more vascularized. Oximetry analysis did not detect a significant difference in oxygen tension at the fracture site between stabilized and nonstabilized fractures during the first 3 days after injury. Further microarray analysis was performed to determine the effects of mechanical stability on the expression of angiogenic factors. No significant difference in the expression of vascular endothelial growth factors and other angiogenic factors was detected between stabilized and nonstabilized fractures. CONCLUSIONS: Mechanical instability promotes angiogenesis during early fracture healing and further research is required to determine the underlying mechanisms.


Subject(s)
Fracture Healing/physiology , Mechanotransduction, Cellular/physiology , Neovascularization, Physiologic/physiology , Oxygen/metabolism , Tibial Fractures/physiopathology , Animals , Mice , Stress, Mechanical
4.
Cells Tissues Organs ; 194(2-4): 244-8, 2011.
Article in English | MEDLINE | ID: mdl-21625064

ABSTRACT

Bone biomechanical performance is a complex trait or, more properly, an ensemble of complex traits. Biomechanical performance incorporates flexibility under loading, yield and failure load, and energy to failure; all are important measures of bone function. To date, the vast majority of work has focused on yield and failure load and its surrogate, bone mineral density. We performed a reciprocal intercross of the mouse strains HcB-8 and HcB-23 to map and ultimately identify genes that contribute to differences in biomechanical performance. Mechanical testing was performed by 3-point bending of the femora. We measured femoral diaphysis cross-sectional anatomy from photographs of the fracture surfaces. We used beam equations to calculate material level mechanical properties. We performed a principal component (PC) analysis of normalized whole bone phenotypes (17 input traits). We measured distances separating mandibular landmarks from calibrated digital photographs and performed linkage analysis. Experiment-wide α = 0.05 significance thresholds were established by permutation testing. Three quantitative trait loci (QTLs) identified in these studies illustrate the advantages of the comprehensive phenotyping approach. A pleiotropic QTL on chromosome 4 affected multiple whole bone phenotypes with LOD scores as large as 17.5, encompassing size, cross-sectional ellipticity, stiffness, yield and failure load, and bone mineral density. This locus was linked to 3 of the PCs but unlinked to any of the tissue level phenotypes. From this pattern, we infer that the QTL operates by modulating the proliferative response to mechanical loading. On this basis, we successfully predicted that this locus also affects the length of a specific region of the mandible. A pleiotropic locus on chromosome 10 with LOD scores displays opposite effects on failure load and toughness with LOD scores of 4.5 and 5.5, respectively, so that the allele that increases failure load decreases toughness. A chromosome 19 QTL for PC2 with an LOD score of 4.8 was not detected with either the whole bone or tissue level phenotypes. We conclude that first, comprehensive, system-oriented phenotyping provides much information that could not be obtained by focusing on bone mineral density alone. Second, mechanical performance includes inherent trade-offs between strength and brittleness. Third, considering the aggregate phenotypic data allows prediction of novel QTLs.


Subject(s)
Bone and Bones/anatomy & histology , Bone and Bones/metabolism , Chromosome Mapping , Crosses, Genetic , Recombination, Genetic/genetics , Animals , Biomechanical Phenomena/genetics , Chromosomes, Mammalian/genetics , Female , Male , Mandible/anatomy & histology , Mice , Mice, Congenic , Phenotype
5.
Bone ; 48(3): 647-53, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-20969983

ABSTRACT

Studies of bone genetics have addressed an array of related phenotypes, including various measures of biomechanical performance, bone size, bone, shape, and bone mineral density. These phenotypes are not independent, resulting in redundancy of the information they provide. Principal component (PC) analysis transforms multiple phenotype data to a new set of orthogonal "synthetic" phenotypes. We performed PC analysis on 17 femoral biomechanical, anatomic, and body size phenotypes in a reciprocal intercross of HcB-8 and HcB-23, accounting for 80% of the variance in 4 PCs. Three of the 4 PCs were mapped in the cross. The linkage analysis revealed a quantitative trait locus (QTL) with LOD = 4.7 for PC2 at 16 cM on chromosome 19 that was not detected using the directly measured phenotypes. The chromosome 19 QTL falls within a ~10 megabase interval, with Osf1 as a positional candidate gene. PC QTLs were also found on chromosomes 1, 2, 4, 6, and 10 that coincided with those identified for directly measured or calculated material property phenotypes. The novel chromosome 19 QTL illustrates the power advantage that attends use of PC phenotypes for linkage mapping. Constraint of the chromosome 19 candidate interval illustrates an important advantage of experimental crosses between recombinant congenic mouse strains.


Subject(s)
Chromosome Mapping , Crosses, Genetic , Femur/physiology , Genetic Linkage , Principal Component Analysis , Animals , Biomechanical Phenomena/physiology , Female , Male , Mice , Phenotype , Quantitative Trait Loci/genetics
6.
Bone ; 46(5): 1251-9, 2010 May.
Article in English | MEDLINE | ID: mdl-20102754

ABSTRACT

Skeletal fragility is an important health problem with a large genetic component. We performed a 603 animal F2 reciprocal intercross of the recombinant congenic strains HcB-8 and HcB-23 to genetically map quantitative trait loci (QTLs) for tissue-level femoral biomechanical performance. These included elastic and post-yield strain, Young's modulus, elastic and maximum stress, and toughness and were calculated from 3-point bend testing of femora by the application of standard beam equations. We mapped these with R/qtl and QTL Cartographer and established significance levels empirically by permutation testing. Significant QTLs for at least one trait are present on chromosomes 1, 6, and 10 in the full F2 population, with additional QTLs evident in subpopulations defined by sex and cross direction. On chromosome 10, we find a QTL for post-yield strain and toughness, phenotypes that have not been mapped previously. Notably, the HcB-8 allele at this QTL increases post-yield strain and toughness, but decreases bone mineral density (BMD), while the material property QTLs on chromosomes 1, 6, and at a second chromosome 10 QTL are independent of BMD. We find significant sex x QTL and cross direction x QTL interactions. A robust, pleiotropic chromosome 4 QTL that we previously reported at the whole-bone level showed no evidence of linkage at the tissue-level, supporting our interpretation that modeling capacity is its primary phenotype. Our data demonstrate an inverse relationship between femoral perimeter and Young's modulus, with R(2)=0.27, supporting the view that geometric and material bone properties are subject to an integrated set of regulatory mechanisms. Mapping QTLs for tissue-level biomechanical performance advances understanding of the genetic basis of bone quality.


Subject(s)
Biomechanical Phenomena/physiology , Chromosome Mapping/methods , Femur/physiology , Animals , Biomechanical Phenomena/genetics , Bone Density/genetics , Crosses, Genetic , Female , Femur/metabolism , Genotype , Male , Mice , Phenotype , Quantitative Trait Loci/genetics
7.
FASEB J ; 23(7): 2142-54, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19261723

ABSTRACT

Despite steady progress in identifying quantitative trait loci (QTLs) for bone phenotypes, relatively little progress has been made in moving from QTLs to identifying the relevant gene. We exploited the genetic structure of recombinant congenic mouse strains by performing a reciprocal intercross of the strains HcB-8 and HcB-23, phenotyped for body size, femoral biomechanical performance, and femoral diaphyseal geometry and mapped with R/qtl and QTL Cartographer. Significant QTLs are present on chromosomes 1, 2, 3, 4, 6, and 10. We found significant sex x QTL and cross-direction x QTL interactions. The chromosome 4 QTL affects multiple femoral anatomic features and biomechanical properties. The known segregating segment of chromosome 4 contains only 18 genes, among which Ece1, encoding endothelin-converting enzyme 1, stands out as a candidate. Endothelin signaling has been shown to promote the growth of osteoblastic metastases and to potentiate signaling via the Wnt pathway. The colocalizing chromosome 4 QTL Bmd7 (for bone mineral density 7) increases responsiveness to mechanical loading. By exploiting the short informative segment of chromosome 4 and the known biology, we propose that Ece1 is the gene responsible for Bmd7 and that it acts by increasing responsiveness to mechanical loading through modulation of Wnt signaling.


Subject(s)
Aspartic Acid Endopeptidases/genetics , Femur/physiology , Metalloendopeptidases/genetics , Quantitative Trait Loci , Animals , Aspartic Acid Endopeptidases/physiology , Biomechanical Phenomena/genetics , Bone Density/genetics , Chromosomes, Mammalian , Crosses, Genetic , Endothelin-Converting Enzymes , Female , Femur/anatomy & histology , Male , Metalloendopeptidases/physiology , Mice , Mice, Congenic , Phenotype , Sex Chromosomes , Wnt Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...