Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 3006, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021143

ABSTRACT

Coronavirus disease 2019 (COVID-19) can lead to pneumonia and hyperinflammation. Here we show a sensitive method to measure polyclonal T cell activation by downstream effects on responder cells like basophils, plasmacytoid dendritic cells, monocytes and neutrophils in whole blood. We report a clear T cell hyporeactivity in hospitalized COVID-19 patients that is pronounced in ventilated patients, associated with prolonged virus persistence and reversible with clinical recovery. COVID-19-induced T cell hyporeactivity is T cell extrinsic and caused by plasma components, independent of occasional immunosuppressive medication of the patients. Monocytes respond stronger in males than females and IL-2 partially restores T cell activation. Downstream markers of T cell hyporeactivity are also visible in fresh blood samples of ventilated patients. Based on our data we developed a score to predict fatal outcomes and identify patients that may benefit from strategies to overcome T cell hyporeactivity.


Subject(s)
COVID-19/immunology , Inflammation/immunology , Lymphocyte Activation/immunology , Pneumonia/immunology , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Adult , Aged , Basophils/immunology , COVID-19/virology , Cells, Cultured , Dendritic Cells/immunology , Female , Humans , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , SARS-CoV-2/physiology , Young Adult
2.
J Immunol ; 202(12): 3514-3523, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31068389

ABSTRACT

Chronic rejection is a major problem in transplantation medicine, largely resistant to therapy, and poorly understood. We have shown previously that basophil-derived IL-4 contributes to fibrosis and vasculopathy in a model of heart transplantation with depletion of CD4+ T cells. However, it is unknown how basophils are activated in the allografts and whether they play a role when cyclosporin A (CsA) immunosuppression is applied. BALB/c donor hearts were heterotopically transplanted into fully MHC-mismatched C57BL/6 recipients and acute rejection was prevented by depletion of CD4+ T cells or treatment with CsA. We found that IL-3 is significantly upregulated in chronically rejecting allografts and is the major activator of basophils in allografts. Using IL-3-deficient mice and depletion of basophils, we show that IL-3 contributes to allograft fibrosis and organ failure in a basophil-dependent manner. Also, in the model of chronic rejection involving CsA, IL-3 and basophils substantially contribute to organ remodeling, despite the almost complete suppression of IL-4 by CsA. In this study, basophil-derived IL-6 that is resistant to suppression by CsA, was largely responsible for allograft fibrosis and limited transplant survival. Our data show that IL-3 induces allograft fibrosis and chronic rejection of heart transplants, and exerts its profibrotic effects by activation of infiltrating basophils. Blockade of IL-3 or basophil-derived cytokines may provide new strategies to prevent or delay the development of chronic allograft rejection.


Subject(s)
Basophils/immunology , Graft Rejection/immunology , Heart Transplantation , Interleukin-3/metabolism , Animals , Cell Movement , Cells, Cultured , Chronic Disease , Disease Models, Animal , Humans , Interleukin-3/genetics , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Transplantation, Homologous , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...