Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38180346

ABSTRACT

In this paper, we present the design and commissioning results of the upgraded collective Thomson scattering diagnostic at the Wendelstein 7-X stellarator. The diagnostic has a new radiometer designed to operate between the second and third harmonics of the electron cyclotron emission from the plasma at 171-177 GHz, where the emission background has a minimum and is of order 10-100 eV. It allows us to receive the scattered electromagnetic field with a significantly improved signal-to-noise ratio and extends the set of possible scattering geometries compared to the case of the original instrument operated at 140 GHz. The elements of the diagnostic are a narrowband notch filter and a frequency stabilized probing gyrotron that will allow measuring scattered radiation spectra very close to the probing frequency. Here, we characterize the microwave components applied to the radiometer and demonstrate the performance of the complete system that was achieved during the latest experimental campaign, OP2.1.

2.
Rev Sci Instrum ; 93(10): 103539, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36319374

ABSTRACT

The ITER Collective Thomson scattering (CTS) diagnostic will measure the dynamics of fusion-born alpha particles in the burning ITER plasma by scattering a 1 MW 60 GHz gyrotron beam off fast-ion induced fluctuations in the plasma. The diagnostic will have seven measurement volumes across the ITER cross section and will resolve the alpha particle energies in the range from 300 keV to 3.5 MeV; importantly, the CTS diagnostic is the only diagnostic capable of measuring confined alpha particles for energies below ∼1.7 MeV and will also be sensitive to the other fast-ion populations. The temporal resolution is 100 ms, allowing the capture of dynamics on that timescale, and the typical spatial resolution is 10-50 cm. The development and design of the in-vessel and primary parts of the CTS diagnostic has been completed. This marks the beginning of a new phase of preparation to maximize the scientific benefit of the diagnostic, e.g., by investigating the capability to contribute to the determination of the fuel-ion ratio and the bulk ion temperature as well as integrating data analysis with other fast-ion and bulk-ion diagnostics.

3.
Rev Sci Instrum ; 93(9): 093520, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182523

ABSTRACT

A new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program. These have been tested for the first time in DTE2 and a concise overview is provided here. Confined alpha particle measurements by gamma-ray spectroscopy were successfully demonstrated, albeit with limitations at neutron rates higher than some 1017 n/s. High resolution neutron spectroscopy measurements with the magnetic proton recoil instrument were complemented by novel data from a set of synthetic diamond detectors, which enabled studies of the supra-thermal contributions to the neutron emission. In the area of escaping fast ion diagnostics, a lost fast ion detector and a set of Faraday cups made it possible to determine information on the velocity space and poloidal distribution of the lost alpha particles for the first time. This extensive set of data provides unique information for fundamental physics studies and validation of the numerical models, which are key to inform the physics and scenarios of ITER.

4.
Rev Sci Instrum ; 92(5): 053529, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243238

ABSTRACT

The Joint European Torus (JET) gamma-ray camera has been recently upgraded with the installation of new gamma-ray detectors, based on LaBr3(Ce) scintillation crystals, which add spectroscopic capability to the existing system allowing measurements with good energy resolution (5% at 0.622 MeV), a dynamic range from hundreds of keV up to about 30 MeV, and high counting rate capabilities of MCps. First gamma-ray measurements during the C38 campaign of the JET have been successfully carried out, in particular, in D-3He plasmas from three-ion ion cyclotron resonance heating experiments, where the detection of 16.4 MeV γ-rays from D + 3He → γ + 5Li reactions with the gamma-ray camera upgrade allowed determining the spatial profile of alpha particles born in D + 3He fusion reactions.

5.
Rev Sci Instrum ; 92(5): 053528, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243325

ABSTRACT

The relationship between simulated ion cyclotron emission (ICE) signals s and the corresponding 1D velocity distribution function fv⊥ of the fast ions triggering the ICE is modeled using a two-layer deep neural network. The network architecture (number of layers and number of computational nodes in each layer) and hyperparameters (learning rate and number of learning iterations) are fine-tuned using a bottom-up approach based on cross-validation. Thus, the optimal mapping gs;θ of the neural network in terms of the number of nodes, the number of layers, and the values of the hyperparameters, where θ is the learned model parameters, is determined by comparing many different configurations of the network on the same training and test set and choosing the best one based on its average test error. The training and test sets are generated by computing random ICE velocity distribution functions f and their corresponding ICE signals s by modeling the relationship as the linear matrix equation Wf = s. The simulated ICE signals are modeled as edge ICE signals at LHD. The network predictions for f based on ICE signals s are on many simulated ICE signal examples closer to the true velocity distribution function than that obtained by 0th-order Tikhonov regularization, although there might be qualitative differences in which features one technique is better at predicting than the other. Additionally, the network computations are much faster. Adapted versions of the network can be applied to future experimental ICE data to infer fast-ion velocity distribution functions.

6.
Rev Sci Instrum ; 92(4): 043526, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243421

ABSTRACT

Fast ions in fusion plasmas often leave characteristic signatures in the plasma neutron emission. Measurements of this emission are subject to the phase-space sensitivity of the diagnostic, which can be mapped using weight functions. In this paper, we present orbit weight functions for the TOFOR and NE213 neutron diagnostics at the Joint European Torus, mapping their phase-space sensitivity in 3D orbit space. Both diagnostics are highly sensitive to fast ions that spend a relatively large fraction of their orbit transit times inside the viewing cone of the diagnostic. For most neutron energies, TOFOR is found to be relatively sensitive to potato orbits and heavily localized counter-passing orbits, as well as trapped orbits whose "banana tips" are inside the viewing cone of TOFOR. For the NE213-scintillator, the sensitivity is found to be relatively high for stagnation orbits.

7.
Rev Sci Instrum ; 92(4): 043537, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-34243441

ABSTRACT

A new tangential gamma-ray spectrometer has been developed for fast ion measurements in deuterium and deuterium-tritium plasmas of the Joint European Torus (JET). The instrument is based on a LaBr3 crystal with a photo-multiplier tube and replaces a pre-existing bismuth germanate detector, providing enhanced energy resolution and a counting rate capability in the MHz range. The line of sight is equipped with a LiH attenuator, which reduces the background due to 14 MeV neutron interactions with the crystal by more than two orders of magnitude and enables the observation of gamma-ray emission from confined α particles in JET deuterium-tritium plasmas. Thanks to its tangential line of sight, the detector can distinguish co- and counter-passing ions. The performance of the instrument is demonstrated through the results of recent JET fast ion experiments in deuterium plasmas.

8.
Rev Sci Instrum ; 92(3): 033546, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820048

ABSTRACT

An ion cyclotron emission (ICE) diagnostic is prepared for installation into the W7-X stellarator, with the aim to be operated in the 2022 experimental campaign. The design is based on the successful ICE diagnostic on the ASDEX Upgrade tokamak. The new diagnostic consists of four B-dot probes, mounted about 72° toroidally away (one module) from the neutral beam injector, with an unobstructed plasma view. Two of the B-dot probes are oriented parallel to the local magnetic field, aimed to detect fast magnetosonic waves. The remaining two probes are oriented poloidally, with the aim to detect slow waves. The radio frequency (RF) signals picked up by the probes are transferred via 50 Ω vacuum-compatible coaxial cables to RF detectors. Narrow band notch filters are used to protect the detectors from possible RF waves launched by the W7-X antenna. The signal will be sampled with a four-channel fast analog-to-digital converter with 14 bit depth and 1 GSample/s sampling rate. The diagnostic's phase-frequency characteristic is properly measured in order to allow measuring the wave vectors of the picked up waves.

9.
Rev Sci Instrum ; 92(3): 033509, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820002

ABSTRACT

We present a novel method for efficient production of prototypes of microwave components by fused depositing modeling, also known as 3D plastic printing, and vapor deposition coating of a 1 µm copper layer. We demonstrate that the properties of the components follow the predicted performance for low power microwave propagation. The production method offers new opportunities for cheap and efficient production of mock-ups and prototypes of advanced-geometry components for tests with low-power microwaves.

10.
Rev Sci Instrum ; 90(2): 023501, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30831775

ABSTRACT

In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X.

11.
Rev Sci Instrum ; 90(1): 013503, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30709181

ABSTRACT

A Collective Thomson Scattering (CTS) diagnostic is installed at Wendelstein 7-X for ion temperature measurements in the plasma core. The diagnostic utilizes 140 GHz gyrotrons usually used for electron cyclotron resonance heating (ECRH) as a source of probing radiation. The CTS diagnostic uses a quasi-optical transmission line covering a distance of over 40 m. The transmission line is shared between the ECRH system and the CTS diagnostic. Here we elaborate on the design, installation, and alignment of the CTS diagnostic and present the first measurements at Wendelstein 7-X.

12.
Rev Sci Instrum ; 89(10): 10D125, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399877

ABSTRACT

Velocity-space tomography provides a way of diagnosing fast ions in a fusion plasma by combining measurements from multiple instruments. We use a toroidally viewing and a vertically viewing fast-ion D-alpha diagnostic installed on the mega-amp spherical tokamak (before the upgrade) to perform velocity-space tomography of the fast-ion distribution function. To make up for the scarce amount of data, prior information is included in the inversions. We impose a non-negativity constraint, suppress the distribution in the velocity-space region associated with null-measurements, and encode the belief that the distribution function does not extend to energies significantly higher than those expected neoclassically. This allows us to study the fast-ion velocity distributions and the derived fast-ion densities before and after a sawtooth crash.

13.
Rev Sci Instrum ; 89(10): 10I124, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399910

ABSTRACT

A new gamma-ray spectrometer with MHz capabilities has been developed to measure the bremsstrahlung emission spectrum in the gamma-ray energy band generated by MeV range runaway electrons in disruption experiments at ASDEX Upgrade. Properties of the runaway electrons are inferred from the measured bremsstrahlung spectrum by a deconvolution technique, particularly with regard to their maximum energy. Changes induced to the runaway electron velocity space are unambiguously observed both in massive gas injection and resonant magnetic perturbation experiments with the detector.

14.
Rev Sci Instrum ; 89(10): 10D121, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30399922

ABSTRACT

Based on the charge exchange reaction between fast ions and a neutral beam, fast ion features can be inferred from the spectrum of Doppler-shifted Balmer-alpha light from energetic hydrogenic atoms. In order to study the interaction between instabilities and fast-ion transport, recently we extended the fast ion D-alpha (FIDA) measurements by using a combination of a bandpass filter and a photomultiplier tube (PMT) (f-FIDA). A bandpass filter selects the desired spectral band from 651 nm to 654 nm before detection by the PMT. Preliminary data from the EAST tokamak show that the active signals have been detected from reneutralized beam ions along the vertical and tangential viewing geometries. The details will be presented in this paper to primarily address the specifications and performance of f-FIDA hardware components and preliminary FIDA measurements.

15.
Phys Rev Lett ; 121(2): 025002, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30085760

ABSTRACT

The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beam-ion population exhibits well-localized velocity-space structures which are revealed by means of tomographic inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a kinetic description of fast particles in ELM models and may contribute to a better understanding of the mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.

16.
Rev Sci Instrum ; 88(7): 073506, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28764505

ABSTRACT

Future fusion reactors are foreseen to be heated by the energetic alpha particles produced in fusion reactions. For this to happen, it is important that the energetic ions are sufficiently confined. In present day fusion experiments, energetic ions are primarily produced using external heating systems such as neutral beam injection and ion cyclotron resonance heating. In order to diagnose these fast ions, several different fast-ion diagnostics have been developed and implemented in the various experiments around the world. The velocity-space sensitivities of fast-ion diagnostics are given by so-called weight functions. Here instrument-specific weight functions are derived for neutron emission spectrometry detectors at the tokamaks JET and ASDEX Upgrade for the 2.45 MeV neutrons produced in deuterium-deuterium reactions in deuterium plasmas. Using these, it is possible to directly determine which part of velocity space each detector observes.

17.
Rev Sci Instrum ; 85(11): 11E103, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430282

ABSTRACT

The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR.

18.
Rev Sci Instrum ; 85(9): 093504, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25273723

ABSTRACT

Collective Thomson scattering (CTS) measurements provide information about the composition and velocity distribution of confined ion populations in fusion plasmas. The bulk ion part of the CTS spectrum is dominated by scattering off fluctuations driven by the motion of thermalized ion populations. It thus contains information about the ion temperature, rotation velocity, and plasma composition. To resolve the bulk ion region and access this information, we installed a fast acquisition system capable of sampling rates up to 12.5 GS/s in the CTS system at ASDEX Upgrade. CTS spectra with frequency resolution in the range of 1 MHz are then obtained through direct digitization and Fourier analysis of the CTS signal. We here describe the design, calibration, and operation of the fast receiver system and give examples of measured bulk ion CTS spectra showing the effects of changing ion temperature, rotation velocity, and plasma composition.

19.
Rev Sci Instrum ; 84(8): 084701, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24007082

ABSTRACT

Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

20.
Opt Express ; 21(5): 6028-44, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482171

ABSTRACT

Dynamic processes in a gliding arc plasma generated between two diverging electrodes in ambient air driven by 31.25 kHz AC voltage were investigated using spatially and temporally resolved optical techniques. The life cycles of the gliding arc were tracked in fast movies using a high-speed camera with framing rates of tens to hundreds of kHz, showing details of ignition, motion, pulsation, short-cutting, and extinction of the plasma column. The ignition of a new discharge occurs before the extinction of the previous discharge. The developed, moving plasma column often short-cuts its current path triggered by Townsend breakdown between the two legs of the gliding arc. The emission from the plasma column is shown to pulsate at a frequency of 62.5 kHz, i.e., twice the frequency of the AC power supply. Optical emission spectra of the plasma radiation show the presence of excited N2, NO and OH radicals generated in the plasma and the dependence of their relative intensities on both the distance relative to the electrodes and the phase of the driving AC power. Planar laser-induced fluorescence of the ground-state OH radicals shows high intensity outside the plasma column rather than in the center suggesting that ground-state OH is not formed in the plasma column but in its vicinity.

SELECTION OF CITATIONS
SEARCH DETAIL
...